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Elliptic Curves — addition
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P+Q\

E:y2=x3+ax+b
P = (x0,¥0)
0 = (x1,y1)
R = (x2,y2)
P+ Q= (x2,—2)




Why are elliptic curves so interesting?

Elliptic curves are “just right”:
» First interesting case after conics.
[Apollonius of Perga (240-190BC)]
» Higher genus is “hyperbolic”.
» A managable special or first case.

Connections

Langlands, representation theory, Fermat’s last theorem
Arithmetics Dynamics

Geometry (first moduli space; algebraic and Lie groups)
Topology (elliptic cohomology, homotopy groups of spheres)
Logic (Hilbert’s Tenth Problem; definability)
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Applications
» Cryptography
» Factorization
» More cryptography

Popular culture



Basic Problem (Solving Diophantine Equations)

Letfi,...,f. be polynomials with integer coefficients, e.g.,
P+yP+1 =0
P =y=7 =0
22 +17x* =1 =0

Basic problem: solve polynomial equations
Describe the set

V(fla"'afm) = {(alv"'vai’l) GZn ZViaﬁ(alv"wan):O}?

i.e., the set of integer solutions to those polynomials

Fact
Solving Diophantine equations is difficult.




Hilbert’'s Tenth Problem

Theorem (Davis—Putnam—Robinson 1961, Matijasevi¢ 1970)
There does not exist an algorithm solving the following problem:
input: integer polynomials fi, . . . . f,, in variables xi, ..., x,;
output: YES / NO according to whether the set of solutions
{(al,...,an) eZ" Vi, filar,...,an) = 0}

is non-empty.

This is known to be true for many other cases (e.g., C,R,F,, Q,, C(1)).

This is still unknown in many other cases (e.g., Q).



Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)

For primes p > 3 the only integer solutions to the equation

Yy =2

are integer multiples of the triples

(0,0,0), (£1,F1,0), +(1,0,1), =+(0,1,1).



https://mathshistory.st-andrews.ac.uk/Miller/stamps/
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Fermat’s Last Theorem - aftermath
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Fermat’s Last Theorem - aftermath




Fermat trolling



https://youtu.be/ReOQ300AcSU?si=--fAdsdPttt4HR3N

Fermat trolling

x“+ y 1 xn,?1+
x"+ i
2987 S8

See https://youtu.be/Re0Q300AcSU?si=——fAdsdPttt4HR3N


https://youtu.be/ReOQ300AcSU?si=--fAdsdPttt4HR3N

Progressive Metal (2007)

THE
OMNISGIENT

See Omnisdimensional Creator and Info Dump


https://www.youtube.com/watch?v=9cAW900S6HE
https://www.youtube.com/watch?v=JlayGrsKnBg
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Elliptic Curves - duplication

/E\
N\

2P

E:y*=xX4ax+b
P = (XO’yO)
2P = (X3’)’3)



Elliptic Curves — identity

P+ow=P

+

\

%

E:y2:x3+ax+b



Elliptic Curves — inverses

E:y2:x3+ax+b




Guiding question

What are the possibilities for the abelian group E(K)?



E(K) as K varies

Complete fields
@ E(C)=S' x S' = C/A (atorus).
@ E(R)~S'orS!' x Z/2Z.
° E(Q)=Zy0T

Mordell-Weil theorem
E(Q) is finitely generated, thus isomorphic to Z" & T
@ ris the rank of E(Q)
@ T is the torsion subgroup of £(Q)
@ T is a finite abelian group (thus a product of cyclic groups)

Finite Fields
E(F,) is finite, and #E(F,) < ¢+ 1+2,/3.




E(K) as K varies

If K C L, then E(K) C E(L) is a subgroup.

If K is a number field (e.g., Q(i)), then

Mordell-Weil theorem
E(K) is finitely generated, thus isomorphicto Z" & T
@ ris the rank of E(K)
@ T is the torsion subgroup of E(K)
@ T is a finite abelian group (thus a product of cyclic groups)




Rank you very much

Mordell-Weil theorem, for K a number field
EK)2Z ®T

ris the rank of E(K)

Rank and file
@ ris unbounded as we vary K.
@ ris conjecturally bounded if K = Q.
@ (2006 Elkies) there is an E/Q of rank 28
@ (2024 Elkies—Klagsbrun) there is an E/Q of rank 29

Distribution of ranks
@ r = 0 half the time, and r = 1 half the time (over Q).
@ r =2 infinitely often (over Q)
@ (Alex Smith) true for quadratic twists
and twisting is a “Markov process” on 2-power Selmer groups




Elliptic Curves — torsion subgroup

Let n € Z be an integer.
Definition
The n-torsion subgroup E[n| of E is defined to be

ker(EﬂE) ={P€E:nP:=P+...+P=o00}.




Elliptic Curves — two torsion

2P =20 =2R =

L Neo [
u E:y2:x3+ax+b




Elliptic Curves — structure of torsion

Let E be given by the equation y? = f(x) = x* + ax + b.
o E[n](C) = E[n)(Q) = (Z/nZ)>.
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Let E be given by the equation y? = f(x) = x* + ax + b.
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Elliptic Curves — structure of torsion

Let E be given by the equation y? = f(x) = x* + ax + b.
® E[n)(C) = E[n](Q) = (Z/nZ)*.
@ E[n|(Q) may be smaller, e.g.,

{0} if f(x) has 0 rational roots
E2)(Q) = Z/2Z if f(x) has 1 rational roots
(Z/27)* if f(x) has 3 rational roots



3-torsion and flexes

/E\
Y

2P

3P=0
2P =—-P



3-torsion and flexes




3-torsion and flexes




How many flexes?



How many flexes?




4 torsion

/E\
Y

2P

4P =0
2P = -2P



Mazur’s Theorem

Let E/Q be an elliptic curve.

Theorem (Mazur, 1978)
E(Q)1ors is isomorphic to one of the following groups.

Z/NZ, forl <N <10orN = 12,
Z)27.&® ZJ)2NZ, forl <N < 4.




Quadratic Torsion

Theorem (Kamienny—Kenku—Momose, 1980’s)

Let E be an elliptic curve over a quadratic number field K.
Then E(K)ors is one of the following groups.

Z/NZ, forl1 <N <16 or N = 18,
Z/2Z®ZJ/2NZ, forl1 <N <6,
7/37 ®Z/3NZ, for1 <N <2, or
Z)AL®L/AL.




Higher Degree Torsion

Let K/Q have degree d.
Theorem
Ifp | #E(K)ors, then:

(Merel, 1996) p < d*"
(Oesterlé) p < (392 +1)? (ifp > 3)

Problem: Classify possibilities for E(K)iors for K/Q of degree d.




Modular curves

The curve Y;(N) paramaterizes pairs (E, P), where P is a point of exact
order N on E. J

LetM | N.

The curve Y| (M, N) paramaterizes E/K such that E(K)irs contains
Z/MZ ® Z/NZ. J




Modular curves via Tate normal form

Move a given point P to (0,0) and change coordinates to put E in the
form
2 .3 2
y 4+ axy+ by = x" + bx
The point P = (0,0) may or may not be a torsion point.

The condition that nP = 0 is an algebraic condition on a and b, and this
gives you a curve.



Modular curves via Tate normal form

Example (N =9)

E(K) D Z/9Z if and only if there exists t € K such that E is isomorphic
to
V24 (t—rt+ Dxy+ (rt — r*t)y = £ + (1t — r21)x?

where ris > — ¢t + 1. The torsion point is (0, 0).

Example (N = 11)
E(K) D Z/11Z if and only if there exist a,b € K such that
@+ B+ 1)a+b=0
in which case E is isomorphic to
2 2

2+ (s—rs+ Dxy+ (rs — ris)y = x> + (rs — r’s)x?

where ris ba + 1 and s is —b + 1.




Mazur’s Theorem

Let E/Q be an elliptic curve.

Theorem (Mazur, 1978)
E(Q)ors is isomorphic to one of the following groups.

Z/NZ, forl <N <10orN = 12,
Z/27 & Z/2NZ, forl <N < 4.

Modular curves:

@ Y, (N) paramaterizes (E, P) with P € E[N] (of exact order N);
@ Y (M,N) paramaterizes containments Z/MZ & Z/NZ C E(K )iors-

Mazur:
Y1(N)(Q) # @ and Y;(2,2N)(Q) # @ iff N are as above.




Rational Points on X;(N) and X;(2,2N)

Let X;(N) and X; (M, N) be smooth compactifications of Y;(N) and Y, (M, N).
We can restate Mazur’s Theorem as follows.

Theorem (Mazur, 1978)
@ X;(N) and X,(2,2N) have genus 0 for exactly the N in Mazur's Theorem.

@ In particular, there are infinitely many E/Q with such torsion structures.

@ Ifg(X) is greater than 0, then X(Q) consists only of cusps.

Minimalism
The simplest thing that could happen does for these modular curves.




Quadratic Torsion

Theorem (Kamienny—Kenku—Momose, 1980’s)

Let E be an elliptic curve over a quadratic number field K.
Then E(K)ors is one of the following groups.

Z/NZ, for1 <N <16 or N = 18,
Z/2Z®ZJ/2NZ, for1 <N <6,
7/37 ®7Z/3NZ, for1 <N <2, or
7] ®LJAL.

@ The corresponding modular curves all have g(X) < 2.
@ Each admits a degree 2 map X — P'.

@ This guarantees that Sym® X(Q) is infinite.
@ i.e., each has infinitely many quadratic points.



Sporadic Points

Let X/Q be a curve and let P € Q. The degree of P is [Q(P) : Q).

The set of degree d points of X is infinite if (and only if)
@ X admits a degree d map X — P!;
@ X admits a degree d map X — E, where rank E(Q) > 0; or
@ Jacy contains a positive rank abelian subvariety such that . ..

Most Q points on curves arise in this fashion (by Riemann—Roch).

@ We call outliers isolated.
@ Cusps and CM points are often isolated on modular curves.

@ Anisolated point P on X is sporadic if there are only finitely points
of X with the same degree as P.

@ A sporadic point is exceptional if it is not cuspidal or CM.

See Bianca Viray’s CNTA talk, linked here.


https://www.youtube.com/watch?v=28iEMA-wn-s

Cubic Torsion

Theorem (Jeon—Kim—Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the

subgroups which arise as E(K) s infinitely often are exactly the
following.

Z/NZ, for1 <N <20,N # 17,19, or
Z)27.&® ZJ)2NZ, for1 <N <7.




Minimalist conjecture
Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if
and only if

@ X admits a degree d map X — P'; or

@ X admits a degree d map X — E, where rank E(Q) > 0; or
@ Jacy contains a positive rank abelian subvariety such that. . .




Minimalist conjecture
Conjecture

A modular curve X admits a non cuspidal, non CM point of degree d if
and only if

@ X admits a degree d map X — P'; or

@ X admits a degree d map X — E, where rank E(Q) > 0; or
@ Jacy contains a positive rank abelian subvariety such that. . .

PENN & TELLER:

FOOLUS




Cubic Torsion

Theorem (Jeon—Kim—-Schweizer, 2004)

Let E be an elliptic curve over a cubic number field K. Then the

subgroups which arise as E(K )ors infinitely often are exactly the
following.

Z/NZ, for1 <N <20,N # 17,19, or
Z/27 & Z/2NZ, forl <N <7.

Theorem (Najman, 2014)

The elliptic curve 162b1 has a 21-torsion point over Q((o)™.

Theorem (Parent)

The largest prime that can divide E(K)ors in the cubic case isp = 13.



http://www.lmfdb.org/EllipticCurve/Q/162b1

Classification of Cubic Torsion

Theorem (Etropolski-Morrow—ZB—Derickx—van Hoeij)

The only torsion subgroups which appear for an elliptic curve over a
cubic field are

Z/NZ, for1l <N <21,N# 17,19, and
Z/2Z®ZJ2NZ, for1 <N <7.

The only sporadic point is the elliptic curve 162b1 over Q({)™.



https://www.math.fsu.edu/~hoeij/papers.html
http://www.lmfdb.org/EllipticCurve/Q/162b1

Quartic Torsion

Theorem (Derickx—Naiman, Cerchia—Newton, 2025)

Let E be an elliptic curve over a quartic number field K. Then E(K)ors
is isomorhpic to exactly the following.

7./nZ, n=1-18,20,21,22,24,
7)2Z x Z.)2nZ, n=1-09,

Z)3Z x Z)3nZ, n=1-3,

7J4Z x T)4nZ, n=1,2,

7./57 % 7.)5Z.,

7./6Z x 7.J6L.

These all occur infinitely often as K varies.
No sporadic quartic torsion.
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Galois theory: torsion fields
Definition
The n-torsion field of E/K is the field
K(E[n]) = {x(P) : P € E[n)(K)} U{y(P) : P € E[n](K)}

i.e., the field obtained by adjoining the coordinates of the n-torsion
points of E to K.

Remark
@ K(E[n]) is Galois overK.
@ Indeed, if o € Gx = Autx K, then

o(nP) =no(P) =0

(since the equations for [n] have coefficients in K).




Elliptic Curves — torsion

m aQ A {o0} if £(x) has 0 rational roots
U EQ2)(Q) = {7Z/2Z,  iff(x) has 1 rational roots

(Z)27)*, if f(x) has 3 rational roots




Example: K(E[2])

Let E be given by the equation y> = f(x) = x> + ax + b.
@ E[n)(C) = E[n)(Q) = (Z/nZ)*.
@ E[n|(Q) may be smaller, e.g.,

727 if f(x) has 1 rational roots

{0} if f(x) has 0 rational roots
E[2)(Q) =
(Z/27)* if f(x) has 3 rational roots

since E2](C) = {occ} U {(e,0) : f(e) = 0}
@ K(E[2]) is thus the splitting field of f, and Gal(K(E[2])/K) C S3



Galois group is linear
Let P, O be a basis for E(K)[n].

Then for o € Gal(K(E[n])/K),

o(P)= a,P + b,0
o(Q)= cP + d,0

The matrix of ¢ acting with respect to this basis is

ady Co
b, d,

Definition
This gives a homomorhpism

pEn: Gk = Gal(K/K) — Gal(K(E[n])/K) — GLy(Z/nZ).

We call this the mod »n Galois representation associated to E.




Serre’s Open Image Theorem

While it is not true that Gal(K(E[n])/K) = GLa2(Z/nZ), it is “mostly” true
Theorem (Serre, 1972)

Let E/K without CM. Then for sufficiently large primes ¢,

Gal(K(E[f])/K) = GLa(Z/¢Z).

Alternatively: the index of

Gal(K(E[n])/K) C GLy(Z/nZ).

is bounded independently of n.

For CM curves, Z/nZ is a ring, and the Galois action commutes with
the ring structure.

See Lozano-Robledo’s paper and work by Bourdon, Clark, and PoIIack.)



https://arxiv.org/abs/1809.02584

Example - torsion on an elliptic curve

If E has a K-rational torsion point P € E(K)[n] (of exact order n) then:

H(n)C((l) :)

since for o € Gk and Q € E(K)[n] such that E(K)[n] = (P, Q),

o(Q)= a,P + b0




