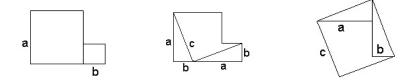
Diophantine Geometry and Uniformity

David Zureick-Brown Amherst College

Slides available at http://dmzb.github.io/

Euler Circle Colloquium June 19, 2025

$$a^2 + b^2 = c^2$$



Basic Problem (Solving Diophantine Equations)

Let f_1, \ldots, f_m be polynomials with integer coefficients, e.g.,

$$x^{2} + y^{2} + 1$$

$$x^{3} - y^{2} - 2$$

$$2y^{2} + 17x^{4} - 1$$

Basic problem: solve polynomial equations Describe the set

$$V(f_1,\ldots,f_m)=\big\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\big\},\$$

i.e., the set of integer solutions to those polynomials

Fact

Solving Diophantine equations is difficult.

Basic Problem (Solving Diophantine Equations)

Let f_1, \ldots, f_m be polynomials with integer coefficients, e.g.,

$$x^{2} + y^{2} + 1 = 0$$

$$x^{3} - y^{2} - 2 = 0$$

$$2y^{2} + 17x^{4} - 1 = 0$$

Basic problem: solve polynomial equations Describe the set

$$V(f_1,\ldots,f_m)=\big\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\big\},\$$

i.e., the set of integer solutions to those polynomials

Fact

Solving Diophantine equations is difficult.

Hilbert's Tenth Problem

Theorem (Davis–Putnam–Robinson 1961, Matijasevič 1970) There <u>does not</u> exist an algorithm solving the following problem: **input**: integer polynomials f_1, \ldots, f_m in variables x_1, \ldots, x_n ; **output**: YES / NO according to whether the set of solutions

$$\left\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\right\}$$

is non-empty.

This is *known* to be true for many other cases (e.g., $\mathbb{C}, \mathbb{R}, \mathbb{F}_q, \mathbb{Q}_p, \mathbb{C}(t)$). This is *still unknown* in many other cases (e.g., \mathbb{Q}).

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

 $(0,0,0), (\pm 1, \mp 1, 0), \pm (1,0,1), \pm (0,1,1).$

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

 $(0,0,0), (\pm 1, \mp 1, 0), \pm (1,0,1), \pm (0,1,1).$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

 $(0,0,0), (\pm 1, \mp 1, 0), \pm (1,0,1), \pm (0,1,1).$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

 $x^p + y^p = z^p$

are integer multiples of the triples

 $(0,0,0), \quad (\pm 1, \mp 1, 0), \quad \pm (1,0,1), \quad \pm (0,1,1).$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

 $x^p + y^p = z^p$

are integer multiples of the triples

 $(0,0,0), \quad (\pm 1, \mp 1, 0), \quad \pm (1,0,1), \quad \pm (0,1,1).$

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

Fermat's Last Theorem - aftermath

This equation has no solutions in integers for n > 3.

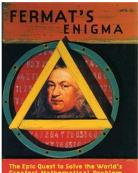
Fermat's Last Theorem - aftermath

 $X^{n} + y^{n} = Z^{n}$ This equation has no solutions in integers for $n \ge 3$.

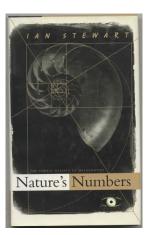
Fermat's Last Theorem - aftermath

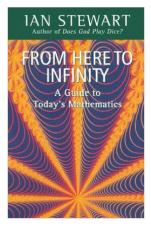
 $X^{n} + y^{n} = Z^{n}$ This equation has no solutions in integers for $n \ge 3$.

Books

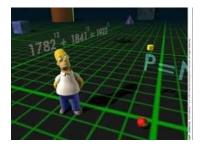


Greatest Mathematical Problem SIMON SINGH foreword by The story period story of the forest

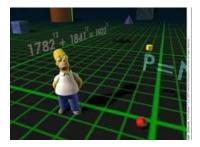


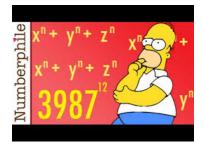


Fermat trolling



Fermat trolling





See https://youtu.be/ReOQ300AcSU?si=--fAdsdPttt4HR3N

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Implicit question

- Why do equations have (or fail to have) solutions?
- Why do some have many and some have none?
- What underlying mathematical structures control this?

Example: Pythagorean triples

$$3^{2}+4^{2}=5^{2}$$

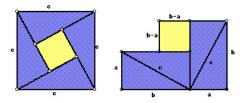
 $5^{2}+12^{2}=13^{2}$
 $7^{2}+24^{2}=25^{2}$

Lemma

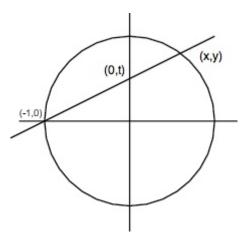
The equation

$$x^2 + y^2 = z^2$$

has infinitely many non-zero coprime solutions.



Pythagorean triples



Slope =
$$t = \frac{y}{x+1}$$

 $x = \frac{1-t^2}{1+t^2}$
 $y = \frac{2t}{1+t^2}$

Pythagorean triples

Lemma

The solutions to

$$a^2 + b^2 = c^2$$

(with $c \neq 0$) are all multiples of the triples

$$a = 1 - t^2 \quad b = 2t \quad c = 1 + t^2$$

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 = f(x)$$

has only finitely many solutions if f(x) is squarefree, with degree > 4.

Fermat Curves

Question

Why is Fermat's last theorem believable?

•
$$x^n + y^n - z^n = 0$$
 looks like a surface (3 variables)

2
$$x^n + y^n - 1 = 0$$
 looks like a curve (2 variables)

Mordell Conjecture

Example

$$y^{2} = -(x^{2} - 1)(x^{2} - 2)(x^{2} - 3)$$

This is a cross section of a two holed torus.

The genus is the number of holes.

Conjecture (Mordell, 1922)

A curve of genus $g \ge 2$ has only finitely many rational solutions.

Fermat Curves

Question

Why is Fermat's last theorem believable?

- $x^n + y^n z^n = 0$ looks like a surface (3 variables)
- 2 $x^n + y^n 1 = 0$ looks like a curve (2 variables)
- and has genus

$$(n-1)(n-2)/2$$

which is ≥ 2 iff $n \geq 4$.

Fermat Curves

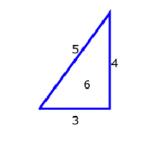
Question

What if n = 3?

- $x^3 + y^3 1 = 0$ is a curve of genus (3 1)(3 2)/2 = 1.
- 2 We were lucky; $Ax^3 + By^3 = Cz^3$ can have infinitely many solutions.

Congruent number problem

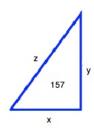
$$x^2 + y^2 = z^2, xy = 2 \cdot 6$$



$$3^2 + 4^2 = 5^2$$
, $3 \cdot 4 = 2 \cdot 6$

Congruent number problem

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$



If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$\begin{aligned} x &= \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\ y &= \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\ z &= \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576} \end{aligned}$$

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$
$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$
$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

The denominator of *z* has **44 digits**!

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

 $z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$

The denominator of z has **44 digits**! How did anyone ever find this solution?

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

 $z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$

The denominator of z has **44 digits**! How did anyone ever find this solution? (Heegner Points)

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

 $z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$

The denominator of *z* has **44 digits**! How did anyone ever find this solution? (Heegner Points) "Next" soluton has **176 digits**!

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

• Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

• Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.

• Num, den(x, y, z) $\le 10^{44} \sim 10^{264}$ many, 10^{258} mins = 10^{252} years.

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

- Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.
- Num, den(x, y, z) $\le 10^{44} \sim 10^{264}$ many, 10²⁵⁸ mins = 10²⁵² years.
- 10⁹ many computers in the world so 10²⁴³ years

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

- Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.
- Num, den(x, y, z) $\le 10^{44} \sim 10^{264}$ many, 10^{258} mins $= 10^{252}$ years.
- 10^9 many computers in the world so 10^{243} years
- Expected time until 'heat death' of universe -10^{100} years.

Fermat Surfaces

Conjecture

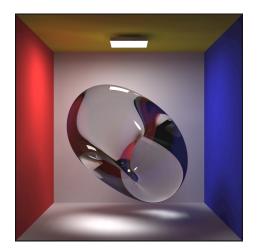
The only solutions to the equation

$$x^n + y^n = z^n + w^n, n \ge 5$$

satisfy xyzw = 0 or lie on the lines 'lines' x = z, y = w (and permutations).

The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$



The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$

Two 'obvious' solutions – $(\pm 1 : 0 : 0)$.

The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$

- Two 'obvious' solutions $-(\pm 1:0:0)$.
- The next smallest solutions are $\left(\pm \frac{1484801}{1169407}, \pm \frac{1203120}{1169407}, \pm \frac{1157520}{1169407}\right)$.

Problem

Find another solution. (Probably impossible.)

Back of envelope calcluation

- **10**¹⁶ **years** to find via brute force.
- 2 Age of the universe $-13.75 \pm .11$ billion years (roughly 10^{10}).

Sums of cubes

$$1 = 1^{3} + 0^{3} + 0^{3}$$

$$2 = 1^{3} + 1^{3} + 0^{3}$$

$$3 = 1^{3} + 1^{3} + 1^{3}$$

$$3 = 4^{3} + 4^{3} + (-5)^{3}$$

$$4 \neq x^{3} + y^{3} + z^{3}$$

$$5 \neq x^{3} + y^{3} + z^{3}$$

$$6 = 1^{3} + 1^{3} + 2^{3}$$

Conjecture (Heath-Brown)

The equation

$$x^3 + y^3 + z^3 = n$$

has an integer solution if and only if n is not 4 or 5 mod 9.

 $32 \neq x^3 + y^3 + z^3$

33 =

 $32 \neq x^3 + y^3 + z^3$

 $33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$

 $32 \neq x^3 + y^3 + z^3$

 $\begin{aligned} 33 &= 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3 \\ 42 &= (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3 \end{aligned}$

 $32 \neq x^3 + y^3 + z^3$

 $33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$ $42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$

 $32 \neq x^3 + y^3 + z^3$

 $\begin{aligned} 33 &= 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3 \\ 42 &= (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3 \end{aligned}$

 $3 = 569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3$

 $32 \neq x^3 + y^3 + z^3$

 $33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$ $42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$

 $3 = 569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3$

 $114 = x^3 + y^3 + z^3?$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $(\pm 1, -1, 0), \quad (\pm 1, 0, 1), \quad \pm (0, 1, 1),$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $(\pm 1, -1, 0), \quad (\pm 1, 0, 1), \quad \pm (0, 1, 1), \quad (\pm 3, -2, 1),$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1), (\pm 71, -17, 2),$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples $(\pm 1, -1, 0), \quad (\pm 1, 0, 1), \quad \pm (0, 1, 1), \quad (\pm 3, -2, 1),$ $(\pm 71, -17, 2), (\pm 2213459, 1414, 65), \quad (\pm 15312283, 9262, 113),$ $(\pm 21063928, -76271, 17).$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $\begin{array}{rl}(\pm 1,-1,0), & (\pm 1,0,1), & \pm (0,1,1), & (\pm 3,-2,1),\\ (\pm 71,-17,2), (\pm 2213459,1414,65), & (\pm 15312283,9262,113),\\ & (\pm 21063928,-76271,17)\,. \end{array}$

Theorem (Poonen, Schaefer, Stoll) The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $\begin{array}{rl}(\pm 1,-1,0), & (\pm 1,0,1), & \pm (0,1,1), & (\pm 3,-2,1),\\ (\pm 71,-17,2), (\pm 2213459,1414,65), & (\pm 15312283,9262,113),\\ & (\pm 21063928,-76271,17)\,. \end{array}$

Problem

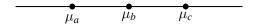
What are the solutions to the equation $x^a + y^b = z^c$?

Problem

What are the solutions to the equation $x^a + y^b = z^c$?

Theorem (Darmon and Granville)

Fix $a, b, c \ge 2$. Then the equation $x^a + y^b = z^c$ has only finitely many coprime integer solutions iff $\chi = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 \le 0$.



Known Solutions to $x^a + y^b = z^c$ with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$

$$1^{p} + 2^{3} = 3^{2}, \qquad 2^{5} + 7^{2} = 3^{4}$$

$$7^{3} + 13^{2} = 2^{9}, \qquad 2^{7} + 17^{3} = 71^{2}$$

$$3^{5} + 11^{4} = 122^{2}$$

$$17^{7} + 76271^{3} = 21063928^{2}$$

$$1414^{3} + 2213459^{2} = 65^{7}$$

$$9262^{3} + 153122832^{2} = 113^{7}$$

$$43^{8} + 96222^{3} = 30042907^{2}$$

$$33^{8} + 1549034^{2} = 15613^{3}$$

Known Solutions to $x^a + y^b = z^c$ with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$

$$1^{p} + 2^{3} = 3^{2}, \qquad 2^{5} + 7^{2} = 3^{4}$$

$$7^{3} + 13^{2} = 2^{9}, \qquad 2^{7} + 17^{3} = 71^{2}$$

$$3^{5} + 11^{4} = 122^{2}$$

$$17^{7} + 76271^{3} = 21063928^{2}$$

$$1414^{3} + 2213459^{2} = 65^{7}$$

$$9262^{3} + 153122832^{2} = 113^{7}$$

$$43^{8} + 96222^{3} = 30042907^{2}$$

$$33^{8} + 1549034^{2} = 15613^{3}$$

Problem (Beal's conjecture) These are all solutions with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

Conjecture (Beal, Granville, Tijdeman–Zagier) This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0.$

Conjecture (Beal, Granville, Tijdeman–Zagier) This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0.$

\$1,000,000 prize for proof of conjecture...

Conjecture (Beal, Granville, Tijdeman–Zagier) This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0.$

\$1,000,000 prize for proof of conjecture... ...or even for a counterexample.

Conjecture (Beal, Granville, Tijdeman–Zagier) This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0.$

\$1,000,000 prize for proof of conjecture... ...or even for a counterexample.

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $\begin{array}{rl}(\pm 1,-1,0), & (\pm 1,0,1), & \pm (0,1,1), & (\pm 3,-2,1),\\ (\pm 71,-17,2), (\pm 2213459,1414,65), & (\pm 15312283,9262,113),\\ & (\pm 21063928,-76271,17)\,. \end{array}$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0$$

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

 $\begin{array}{rl}(\pm 1,-1,0), & (\pm 1,0,1), & \pm (0,1,1), & (\pm 3,-2,1),\\ (\pm 71,-17,2), (\pm 2213459,1414,65), & (\pm 15312283,9262,113),\\ & (\pm 21063928,-76271,17)\,. \end{array}$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0$$
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} - 1 = 0$$

Theorem (Darmon, Merel)

Any pairwise coprime solution to the equation

$$x^n + y^n = z^2, n > 4$$

satisfies xyz = 0.

$$\frac{1}{n} + \frac{1}{n} + \frac{1}{2} - 1 = \frac{2}{n} - \frac{1}{2} < \frac{2}{4} - \frac{1}{2} = 0$$

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)

The only Fibonacci numbers that are perfect powers are

$$F_1 = F_2 = 1, F_6 = 8, F_{12} = 144.$$

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)

The only Fibonacci numbers that are perfect powers are

$$F_1 = F_2 = 1, F_6 = 8, F_{12} = 144.$$

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

Theorem (Silliman–Vogt; 2013 REU)

0 and 1 are the only perfect powers in the Lucas sequence

$$L_1 = 0, L_2 = 1, \quad L_n = 3L_{n-1} - 2L_{n-2}.$$

 $0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, \dots, 2^n - 1, \dots$

Theorem (Klein, Zagier, Beukers, Edwards, others) *The equation*

$$x^2 + y^3 = z^5$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others) The equation

$$x^2 + y^3 = z^5$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others) The equation

$$x^2 + y^3 = z^5$$

has infinitely many coprime solutions

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others) The equation

$$x^2 + y^3 = z^5$$

has infinitely many coprime solutions

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

$$(T/2)^2 + H^3 + (f/12^3)^5$$

2 H = Hessian of f,

If T = a degree 3 covariant of the dodecahedron.

(a, b, c) such that $\chi < 0$ and the solutions to $x^a + y^b = z^c$ have been determined.

 $\{n, n, n\}$ Wiles, Taylor–Wiles, building on work of many others $\{2, n, n\}$ Darmon–Merel, others for small n $\{3, n, n\}$ Darmon–Merel, others for small *n* $\{5, 2n, 2n\}$ Bennett (2, 4, n)Ellenberg, Bruin, Ghioca n > 4(2, n, 4)Bennett–Skinner; n > 4 $\{2, 3, n\}$ Poonen–Shaefer–Stoll, Bruin. 6 < n < 9Chen, Dahmen, Siksek; primes $7 < \ell < 1000$ with $\ell \neq 31$ $\{2, 2\ell, 3\}$ $\{3, 3, n\}$ Bruin; n = 4, 5 $\{3, 3, \ell\}$ Kraus: primes $17 < \ell < 10000$ (2, 2n, 5)Chen $n > 3^*$ (4, 2n, 3)Bennett–Chen n > 3(6, 2n, 2)Bennett–Chen n > 3(2, 6, n)Bennett–Chen n > 3

(a, b, c) such that $\chi < 0$ and the solutions to $x^a + y^b = z^c$ have been determined.

 $\{n, n, n\}$ Wiles, Taylor–Wiles, building on work of many others $\{2, n, n\}$ Darmon–Merel, others for small n $\{3, n, n\}$ Darmon–Merel, others for small *n* $\{5, 2n, 2n\}$ Bennett (2, 4, n)Ellenberg, Bruin, Ghioca n > 4(2, n, 4)Bennett–Skinner; n > 4 $\{2, 3, n\}$ Poonen–Shaefer–Stoll, Bruin. 6 < n < 9Chen, Dahmen, Siksek; primes $7 < \ell < 1000$ with $\ell \neq 31$ $\{2, 2\ell, 3\}$ $\{3, 3, n\}$ Bruin; n = 4, 5 $\{3, 3, \ell\}$ Kraus: primes $17 < \ell < 10000$ (2, 2n, 5)Chen $n > 3^*$ (4, 2n, 3)Bennett–Chen n > 3(6, 2n, 2)Bennett–Chen n > 3(2, 6, n)Bennett–Chen n > 3(2, 3, 10)ZB

Faltings' theorem / Mordell's conjecture

Theorem (Faltings, Vojta, Bombieri)

Let *X* be a smooth curve with genus at least 2. Then $\#X(\mathbb{Q}) < \infty$.

Example

For $g \ge 2$, $y^2 = x^{2g+1} + 1$ has only finitely many solutions with $x, y \in \mathbb{Q}$.

Conjecture (Lang, Vojta)

Let *X* be a variety of general type. Then $X(\mathbb{Q})$ is not (Zariski) dense.

Uniformity

Problem

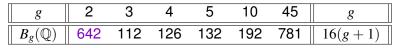
- **(**) Given X, compute $X(\mathbb{Q})$ exactly.
- 2 Compute bounds on $\#X(\mathbb{Q})$.

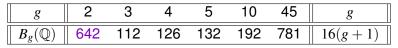
Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g over \mathbb{Q} has at most N(g) rational points.

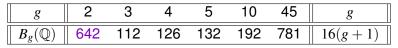
Theorem (Caporaso, Harris, Mazur)

Lang's conjecture \Rightarrow uniformity.





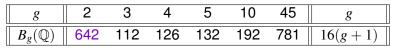
 $y^{2} = 82342800x^{6} - 470135160x^{5} + 52485681x^{4} + 2396040466x^{3} + 567207969x^{2} - 985905640x + 247747600$



 $y^{2} = 82342800x^{6} - 470135160x^{5} + 52485681x^{4} + 2396040466x^{3} + 567207969x^{2} - 985905640x + 247747600$

x = -3898675687/2462651894

y = 414541623698393040986922116885/83905238898871602089890028



 $y^{2} = 82342800x^{6} - 470135160x^{5} + 52485681x^{4} + 2396040466x^{3} + 567207969x^{2} - 985905640x + 247747600$

x = -3898675687/2462651894

y = 414541623698393040986922116885/83905238898871602089890028

Remark

Elkies studied K3 surfaces of the form

$$y^2 = S(t, u, v)$$

with lots of rational lines, such that S restricted to such a line is a square.

Main Theorem (uniformity for curves of small rank)

Theorem (Katz-Rabinoff-ZB)

Let *X* be any curve of genus *g* and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_{X}(\mathbb{Q})$. Suppose r < g - 2. Then

$$\#X(\mathbb{Q}) \le 84g^2 - 98g + 28$$

Tools

p-adic integration on annuli

comparison of different analytic continuations of *p*-adic integration Non-Archimedean (Berkovich) structure of a curve [BPR] Combinatorial restraints coming from the Tropical canonical bundle

Chabauty's method

(*p*-adic integration) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \ge g - r$ such that

$$\int_P^Q \omega = 0 \qquad \quad orall P, Q \in X(\mathbb{Q}), \, \omega \in V.$$

(**Coleman, via Newton Polygons**) Number of zeroes in a residue disc D_P is $\leq 1 + n_P$, where $n_P = \# (\operatorname{div} \omega \cap D_P)$

(Riemann–Roch) $\sum n_P = 2g - 2$. (Coleman's bound) $\sum_{P \in X(\mathbb{F}_p)} (1 + n_P) = \#X(\mathbb{F}_p) + 2g - 2$.

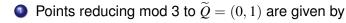
p-adic integration

(Chabauty, Coleman) There exists $V \subset H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$ with $\dim_{\mathbb{Q}_p} V \ge g - r$ such that,

$$\int_P^Q \omega = 0 \qquad \quad \forall P, Q \in X(\mathbb{Q}), \omega \in V$$

Example

$$X: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1$$



$$\begin{aligned} x &= 3 \cdot t, \text{ where } t \in \mathbb{Z}_3 \\ y &= \sqrt{x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1} = 1 + x^2 + \cdots \end{aligned}$$

2
$$\int_{(0,1)}^{P_t} \frac{xdx}{y} = \int_0^t (x - x^3 + \cdots) dx$$

Main Theorem (uniformity for curves of small rank)

Theorem (Katz-Rabinoff-ZB)

Let *X* be any curve of genus *g* and let $r = \operatorname{rank}_{\mathbb{Z}} \operatorname{Jac}_{X}(\mathbb{Q})$. Suppose r < g - 2. Then

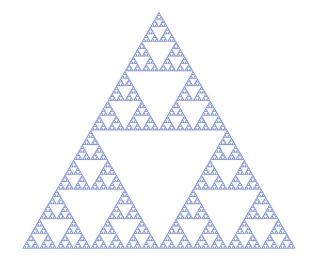
$$\#X(\mathbb{Q}) \le 84g^2 - 98g + 28$$

Tools

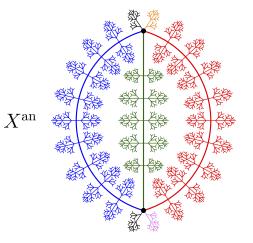
p-adic integration on annuli

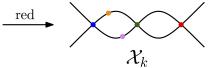
comparison of different analytic continuations of *p*-adic integration Non-Archimedean (Berkovich) structure of a curve [BPR] Combinatorial restraints coming from the Tropical canonical bundle

3-adics vs Sierpinski triangle



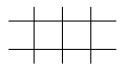
Berkovich picture





Baker–Payne–Rabinoff and the slope formula

(Dual graph Γ of $X_{\mathbb{F}_n}$)



(Contraction Theorem) $\tau: X^{\mathrm{an}} \to \Gamma$.

(Combinatorial harmonic analysis/potential theory)

 $\operatorname{div} F$

a meromorphic function on X^{an} $F := (-\log |f|) \Big|_{\Gamma}$ associated tropical, piecewise linear function combinatorial record of the slopes of F

(Slope formula) $\tau_* \operatorname{div} f = \operatorname{div} F$

Berkovich picture

