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Galois Representations

Q CKcQ
Gk = Aut(K/K)
E[n)(K) = (Z/nZ)?

pEn: Gk — AwtEn] = GLy(Z/nZ)
PE > Gk — GLZ(Z[) = @GLZ (Z/ﬁnZ)

pe: Gk — GLo(Z) = lim GL, (Z/nZ)



Serre’s Open Image Theorem

Theorem (Serre, 1972)
Let E be an elliptic curve over K without CM. The image

pE(GK) (- GL2 (2)

of pg is open.

Note:

GLy(Z H GLa(Zy)

Thus pg ¢ is surjective for all but finitely many ¢.

For CM curves, see Lozano-Robledo’s paper and work by Bourdon,

Clark, and Pollack.

)



https://arxiv.org/abs/1809.02584

Image of Galois

pEn: Go - H(n) — GLy(Z/nZ)

Problem (Mazur’s “program B”)
Classify all possibilities for H(n).




Mazur’'s Program B

As presented at Modular functions in one variable V in Bonn

Theorem 1 also fits into a general program:

on
B. Given a number field K and a subgroup H of GLZZ =1 GL2 Zp classify
p

all elliptic curves E /K whose associated Galois representation on torsion points

= o
maps Gal(K/K) into H < GL2 Z .

Mazur - Rational points on modular curves (1977)



Example - torsion on an elliptic curve

If E has a K-rational torsion point P € E(K)[n] (of exact order n) then:

H(n)C((l) :)

since for o € Gk and Q € E(K)[n] such that E(K)[n] = (P, Q),

o(Q)= a,P + b0




Example - Isogenies

If E has a K-rational, cyclic isogeny ¢: E — E’ with ker ¢ = (P) then:

H<n>c(;:)

since for o € Gx and Q € E(K)[n] such that E(K)[n] = (P, Q),

o(P)= a,P
U(Q): boP A Ca’Q




Example - other maximal subgroups

Normalizer of a split Cartan:

vo=((52)-(50))

H(n) C Ngp and H(n) ¢ Cs, iff
@ there exists an unordered pair {¢;, ¢, } of cyclic isogenies,
@ whose kernels intersect trivially,
@ neither of which is defined over K,
@ but which are both defined over some quadratic extension of K,
@ and which are Galois conjugate.




Example - other maximal subgroups

FLactsonF, =F, xF,
Normalizer of a non-split Cartan:

Cns =im (F;z — GLz(]Fp)) C an

H(n) C Nps and H(n) ¢ Cps iff
E admits a “necklace” (Rebolledo, Wuthrich)




Image of Galois

pEn: Go - H(n) — GLy(Z/nZ)

Problem (Mazur’s “program B”)
Classify all possibilities for H(n).




Modular curves

Definition
® X(N)(K) = {(E/K,P,Q) : EIN] = (P, 0)} U {cusps}
® X(N)(K) > (E/K,P,Q) < ppn(Gk) = {I}

~

Let T'(N) € H C GL,(Z). The minimal such N is the level of H.

Definition
Xy :=X(N)/H(N) (Wwhere H(N) is the image of H in GL,(Z/NZ))

XH(K) > (E/K, L) = pE7N(GK) C H(N)

Stacky disclaimer

This is only true up to twist; there are some subtleties if
Q J(E) € {0,123} (plus some minor group theoretic conditions), or
Qif-IeH.




Rational Points on modular curves

Mazur’s program B
Compute Xy (Q) for all H.

Remark

@ Sometimes Xy = P! or elliptic with rank Xg(Q) > 0.
@ Some Xy have exceptional points (i.e, non-cusp non-CM points).
@ Can compute g(Xy) group theoretically (via Riemann—Hurwitz).

Fact

¢(Xn),7(Xn) — oo as [GLz(z) : H} — .




(Serre) Sample subgroup H C GL,(Z)

kergp C H(B) C GLy(Z/87Z) dimp, ker ¢, = 3
b
I+ 2M2(Z/ZZ) C H(4) = GLz(Z/4Z) dirIl]F2 ker p; = 4

=

e

HQ2) = GCLy(Z/2Z)

X: GLy(Z/8Z) — GLy(Z/27) x (Z/8Z)* — L.J27 x (Z/8Z)* = F3.

X = Sgn X det
H(8) :=x"1G), G C F5.




A typical subgroup H C GL,(Z)

ker ¢4

ker ¢3

ker ¢»

ker qbl

C

H(32)
on
H(16)

C GLy(Z/322)
C GLy(Z/16Z)
C  GL.(Z/87)

C  GLy(Z/47)

= GLy(Z/2Z)

dimpg, ker ¢4 = 4

dimp, ker ¢3 = 3

dimp, ker ¢, = 2

dimp, ker ¢; =3



Non-abelian entanglements

There exists a surjection 0: GLy(Z/3Z) — GL,(Z/27Z).

GL»(Z/67)

GL,(Z,/27) GL,(Z/37)

Brau—Jones
im ppe C H(6) < j(E) =21933(1 — 44) = K(E[2]) C K(E[3])
Xy = P' L x(1)




Main conjecture

Conjecture (Serre)

Let E be an elliptic curve over Q without CM. Then for ¢ > 37, pg is
surjective.

In other words, conjecturally, pg ¢~ = GL2(Z) for £ > 37.



“Vertical” image conjecture

Conjecture
There exists a constant N such that for every E/Q without CM

[GLZ(Z) : pE(GQ)] <N.

Remark
This follows from the “ > 37" conjecture.

Problem
Assume the 4 > 37" conjecture and compute N.




Labeling subgroups of GLZ( ) up to conjugacy

Definition

When det(H) = Z* these labels have the form N.1.g.n, where N is
the level, i is the index, g is the genus, and n is a tiebreaker given by
ordering the subgroups of GL,(N).

Example
e The Borel subgroup B(13) has label 13.14.0.1.
e The normalizer of the split Cartan N, (13) has label 13.91.3.1.

e The normalizer of the nonsplit Cartan N,s(13) has label
13.78.3.1.

e The maximal S, exceptional group S4(13) has label 13.91.3.2.



https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.14.0.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.78.3.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.2
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Main Theorem

Definition
A point (E, ) € Xy (K) is exceptional if Xy (K) is finite and End E = Z.

Theorem (Rouse—Sutherland-ZB 2021)
Let ¢ prime, E/Q be a non-CM elliptic curve, and H = pg 4 (Gg).
Then exactly one of the following is true:
Q@ Xy (Q) is infinite and H is listed in (Sutherland—Zywina 2017);
@ Xy has a rational exceptional point listed in Table 1;
©Q H < Nys(3%), Nus(52), Nus(7?), Nus (112), or Nus(¢) for some £ > 13;
©Q Hisasubgroupof 49.179.9.10r 49.196.9.1.

We conjecture that cases (3) and (4) never occur.
If they do, the exceptional points have extraordinarily large heights
(e.9. 1019 for X(112)(Q)).


https://arxiv.org/abs/2106.11141
https://arxiv.org/abs/1605.03988

label level notes Jj-invariants/models of exceptional points

16.64.2.1 24 Nis (16) —218.3.53 133 . 413 . 1073 /1719, —221.33.53.7.13%. 233 413 11
16.96.3.335 24 H(4) C Nyp(4) 2573 28

16.96.3.343 24 H(4) C Nep(4) 173 . 2413 /24

16.96.3.346 24 H(4) C Nep(4) PARS VA

16.96.3.338 24 H(4) C Nyp(4) 2!

32.96.3.230 2’ H(4) C Nyp(4) —33.53 473 12173 /(28 - 31%)
32.96.3.82 2’ H(8) C Nip(8) 3350133 . 233 413 /(210 . 31%)
25.50.2.1 52 H(5) = Nys(5) 2. 3% .57 . 233

25.75.2.1 52 H(5) = Np(5) 21233 .57 . 293 /75

7.56.1.2 7 C Nus(7) 3*.5.79,27

7.112.1.2 7 —I1¢H V2 ay 4y =2 — 2 —2680x — 50053, ¥ +xy+y=2x —i% — 1313
11.60.1.3 11 C B(11) —11-1313

11.120.1.8 11 —I¢H V4xy+y=x +x>—30x—76
11.120.1.9 11 —I¢H Vv2+xy:x3+x272xf7

11.60.1.4 11 C B(11) —112

11.120.1.3 11 —I¢&H 32 4 ay = 0 + 2% — 3632x + 82757
11.120.1.4 11 —I¢H v 4+ xy+y=x + x> — 305r + 7888
13.91.3.2 13 S4(13) 2to5 13t 1733, —2l2u 53 13t 313) 218033 134 1273 1393 1573 -
17.72.1.2 17 C B(17) —17-3733 217

17.72.1.4 17 C B(17) —17% 1013 )2

37.114.4.1 37 C B(37) —7-113

37.114.4.2 37 C B(37) —7-1373 . 20833

Table 1. All known exceptional groups, j-invariants, and points of prime power level.


https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.64.2.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.335
https://www.lmfdb.org/EllipticCurve/Q/3362/a/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.343
https://www.lmfdb.org/EllipticCurve/Q/3362/a/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.346
https://www.lmfdb.org/EllipticCurve/Q/200/b/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.338
https://www.lmfdb.org/EllipticCurve/Q/200/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=32.96.3.230
https://www.lmfdb.org/EllipticCurve/Q/17918/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=32.96.3.82
https://www.lmfdb.org/EllipticCurve/Q/17918/b/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=25.50.2.1
https://www.lmfdb.org/EllipticCurve/Q/396900/e/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=25.75.2.1
https://www.lmfdb.org/EllipticCurve/Q/21175/bm/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=7.56.1.2
https://www.lmfdb.org/EllipticCurve/Q/2450/i/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=7.112.1.2
https://www.lmfdb.org/EllipticCurve/Q/2450/y/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.60.1.3
https://www.lmfdb.org/EllipticCurve/Q/1089/i/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.8
https://www.lmfdb.org/EllipticCurve/Q/121/a/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.9
https://www.lmfdb.org/EllipticCurve/Q/121/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.60.1.4
https://www.lmfdb.org/EllipticCurve/Q/1089/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.3
http://lmfdb.org/EllipticCurve/Q/121/c/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.4
https://www.lmfdb.org/EllipticCurve/Q/121/a/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.2
https://www.lmfdb.org/EllipticCurve/Q/50700/z/1
https://www.lmfdb.org/EllipticCurve/Q/61347/bb/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=17.72.1.2
https://www.lmfdb.org/EllipticCurve/Q/14450/o/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=17.72.1.4
https://www.lmfdb.org/EllipticCurve/Q/14450/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=37.114.4.1
https://www.lmfdb.org/EllipticCurve/Q/1225/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=37.114.4.2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1

UNSOLVETD
Eﬁlt

Arithmetically maximal level ¢* groups with ¢ < 13 with X (Q) unknown.

label level group genus
27.243.12.1 33 Nus(3?) 12
25.250.14.1 52 Nus(52) 14
49.1029.69.1 72 Nys(7%) 69
49.147.9.1 7 ((64).(0%)) 9
49.196.9.1 7 ((%a).(¥8) 9
121.6655.511.1 112 Nys(112) 511

Each has rank = genus, rational CM points, no rational cusps, and



Summary of ¢-adic images of Galois for non-CM E/Q.

L 2 3 5% 7¢ 11* 13 17 37* other”

subgroups | 1208 47 25 17 8 12 3 3
exceptional 7 0 2 2 6 1 2 2
unexceptional | 1201 47 23 15 2 1 1 1
max level 32 27 25 7 11 13 17 37
max index 96 72 120 112 120 91 72 114
max genus 3 0 2 1 1 3 1

[ I G G G o, RS

4

Summary of H < GL,(Z,) which occur as pg ¢ (Gg) for some non-CM E/Q.

Starred primes depend on the conjecture that cases (3) and (4) of our
theorem do not occur.

In particular, we conjecture that there are 1207,46,24,16,7,11,2,2 proper
subgroups of GL,(Z,) that arise as pg ¢~ (Gg) for non-CM E/Q for
£=12,3,5,7,11,13,17,37 and none for any other /.



Applications

Theorem (R. Jones, Rouse, ZB)
@ Arithmetic dynamics: let P € E(Q).
@ How often is the order of P € E(F,) odd?
© Answer depends on pg = (Gg).
© Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)
Classification of E(Q(3°°))tors

Theorem (Gonzalez-Jimenez, Lozanon-Robledo)
Classify E/Q with pp n(Gg) abelian.

Theorem (Rouse—Sutherland-ZB)
Improved algorithms for computing pg »(Gq).




Arithmetically maximal groups

Definition

We say that an open subgroup H C GLz(i) is arithmetically maximal if
Q det(H) = 7" (necessary for Q-points),
@ aconjugate of () ° ) or (§ ) liesin H (necessary for R-points),
Q (X4 (Q)) is finite but j(X;/ (Q)) is infinite for H C H' C GL,(Z).

Arithmetically maximal groups H arise as maximal subgroups of an H’
with X/ (Q) infinite.


https://arxiv.org/abs/1605.03988

Arithmetically maximal groups

Definition

We say that an open subgroup H C GLz(i) is arithmetically maximal if
Q det(H) = 7" (necessary for Q-points),
@ aconjugate of () ° ) or (§ ) liesin H (necessary for R-points),
Q (X4 (Q)) is finite but j(X;/ (Q)) is infinite for H C H' C GL,(Z).

Arithmetically maximal groups H arise as maximal subgroups of an H’
with X/ (Q) infinite.

Theorem (Sutherland—Zywina 2017)

Fort¢ =2, 3,5,7,11,13 there are 1208,47,23,15,2, 11 subgroups
H < GLZ( ) of £-power level with Xy (Q) infinite, and only H = GL,(Z)
for ¢ > 13.

This allows us to compute explicit upper bounds on the level and index
of arithmetically maximal subgroup of prime power level ¢ and we can
then exhaustively enumerate them.


https://arxiv.org/abs/1605.03988

Subgroups of GL;(Z13)

Borel 169




Subgroups of GL,(%Z,)
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Steps of the proof

@ Compute the set S of arithmetically maximal subgroups of /-power
level for ¢ < 37 (for all £ > 37 we already know N,,(¢) is the only possible
exceptional group).

@ For H ¢ S check for local obstructions and compute the isogeny
decomposition of the Jacobian of X and the analytic ranks of all its
simple factors.

@ For H ¢ S compute equations for X;; and ji: Xi — X(1) (if needed).
In several cases we can prove Xy (Q) is empty without a model for X5.

© For H € S with —I € H determine the rational points in X5 (Q) (if
possible). In several cases we are able to exploit recent progress by
others (¢ = 13 for example).

@ For H € S with —I ¢ H compute equations for the universal curve
& — U, where U C Xy is the locus with j(P) # 0, 1728, cc.



Subgroups of GL,(Z)

11.55.1.1




Subgroups of GL,(Z3)




Subgroups of GL,(Zs)




Subgroups of GL,(Z7)




Finding Equations for X, — Basic idea

@ The canoncial map C — P¢~!is given by P — [wi(P) : - - - : w,(P)].
© For a general curve, this is an embedding, and the relations are
quadratic.

© For a modular curve,
My (H) = H (X, Q' (A)®/?)

given by
f(2) — f(z) dz®/2.




Equations — Example: X;(17) c P*
Cusp forms

g —11¢° + 104" + 0(¢%)
g =14 +6q" +0(q°)
7 — 49 +29 +0(¢%)

q' —2¢° + 0(¢")
¢° =34’ + 0(q")

xu+2xv —yz4+yu—3yw+ 22 —dzu+ 2 +v2 =0
XU+ xv—yz+yu—2yv+2> —3zu+2uv =0
2xz — 3xu + xv — 2y° + 3yz + Tyu — 4yv — 522 — 3zu + 4zv = 0




Computing models of modular curves

We introduce a variety of improvements and tricks to compute
models of various Xy.

See Rouse’s VaNTAGe talk for more details and interesting
examples.

To compute jg: Xy — X(1) we represent E, and Eg as ratios of
elements of the canonical ring.

We show that E, is a rational function of an element of weight «
and weight k — 4 if
k> 200 + €2 +e3+5g —4
2(g—1)
We used this method to compute canonical models for many
curves of large genus.

See Assaf’s recent paper and Zywina’s BIRS talk for other
efficient approaches.


https://youtu.be/L_Il_sJymEs?mute=1;autoplay=0
https://arxiv.org/abs/2002.07212
https://www.birs.ca/events/2017/5-day-workshops/17w5065/videos/watch/201705291503-Zywina.html

Explicit methods: highlight reel

Local methods

Chabauty and Elliptic Chabauty
Mordell-Weil sieve

étale descent

Pryms

Equationless étale descent via group theory
New techniques for computing Aut C

Nonabelian Chabauty

“Equationless” local methods and Mordell-Weil sieve
Greenberg Transforms (and big computations)

Novel variants of existing techniques

Modularity of isogeny factors of J; (w/ Voight)




Computing Xy (FF,) “via moduli”
Idea: one can compute #X;(N)(F,) by enumerating elliptic curves over
IF,, then computing their N torsion subgroups.

Deligne—Rapoport 1973

The modular curves Xy and Yy are coarse spaces for the stacks My
and MY, that parameterize elliptic curves E with H-level structure, by
which we mean an equivalence class [ty of isomorphisms

v: E[N] — Z(N)?, where « ~ /' if . = h o // for some h € H.

o Yy(k) = {U(E),a) : a = HgAg} with Ap := {on 1 p € Aut(Ep)},
and YH(k) = YH(k)Gk.

o X°(k) = {a € H\ GLy(N)/U(N) : oX¥(%) = o} where
UN):=((41),-1)-

e For k =T, to compute #Xy (k) = #Yu(k) + #X57 (k) count double
cosets fixed by Gy.

e See Drew’s Slides for a nice summary of the implementation.


https://math.mit.edu/~drew/UpstateNY2021.pdf

Arithmetically maximal H of /-power level for which
Xu(F,) = 0 for some p # ¢ < 37

label level generators D rank genus
16.48.2.17  2* (Y 35).(77).(59).(3) 311 0 2
27.108.4.5 3 (43,089 7,31 0 4
25.150.4.2 2 (D). (23) 2 0 4
25.150.4.7 50 (22) (23) 3,23 4 4
25.150.4.8 52 (84), (%7 2 0 4
25.150.4.9 5% (29),(31) 2 0 4
49.168.12.1 7 (3%5).(43) 2 3 12
13.84.2.2 13 (33).(5h) 2 0 2
13.84.2.3 13 (32).(3%) 3 0 2
13.84.2.4 13 (815).(583) 2 0 2
13.84.2.6 13 (39). (0 ) 3 0 2




Decomposing the Jacobian of Xy

~

Let H be an open subgroup of GL»(Z) of level N.
Let Jy denote the Jacobian of Xj.

Theorem (Rouse—Sutherland—Voight-ZB 2021)

Each simple factor A of Jy is isogenous to Ay for a weight-2
eigenform f on To(N?) NT'{(N).

Corollary (Kolyvagin’s theorem)

If A is an isogeny factor of Xy, and if the analytic rank of A is zero,
then A(Q) is finite.

Corollary (Decomposition)

We can decompose Jy up to isogeny using linear algebra and
point-counting.



https://arxiv.org/pdf/2106.11141.pdf#page=42

Mordell-Weil sieve

@ Let X be a curve and A be an abelian variety.

@ If X(IF,) is empty for some p then X(Q) is empty.



Mordell-Weil sieve

@ Let X be a curve and A be an abelian variety.

X(@Q) ——AQ)

| b

X(Fp) 7r*”4([5‘17)-

o If X(F,) is empty for some p then X(Q) is empty.
@ If im7 Nim 3 is empty then X(Q) is empty.



Mordell-Weil sieve

@ Let X be a curve and A be an abelian variety.

X(@Q) ————A@Q

J l
[Tyes X(Fp) == TT,esA(Fy)-
o If X(F,) is empty for some p then X(Q) is empty.

@ If im7 Nim 3 is empty then X(Q) is empty.
@ This is explicit and is implemented in Magma.



An equationless sieve for the group 121.605.41.1

The curve Xy has local points everywhere, and analytic rank = genus = 41.

H(11) C Nps(11), so Xy maps to X, (11), which is an elliptic curve of rank 1.
Xy(Q) ——— X (IN(Q) =—=(R) =Z

| |

[Tyes Xa(Ep) — TT,es Xa (1) (F,)

We can compute im 7g without equations for Xy or ns

@ A point of X (11)(F,) corresponds to E with pg 11(Gr,) C Nns(11)
and lifts to a point of X (F,) if and only if pg 121 (Gr,) C H(121).

@ Forp = 13 the image of any point in Yy (Q) maps to nR withn = 1,5 mod 7.

o For p = 307 any point in Yy (Q) maps to nR withn = 2,3,4,7, 10, 13 mod 14.

Therefore Yy (Q) = @ (and in fact X5 (Q) = @; there are no rational cusps).




Gargantuan models of modular curves'

e We computed canonical models (over Q) for 27.729.43.1
(resp. 25.625.36.1).

e We use these models to prove that Xy has no Qs (resp. Qs) as
follows.

e These models have very bad reduction at p = 3 (resp. 5).
(They’re not even flat.)

o Xy(F,) # 0 for all p, but Xy(Z/p*Z) = 0 for p = 3 (resp. 5).

e The “Greenberg transform” (i.e., the “Wittferential tangent space
of Buium) is adjoint to Witt vectors: X (F,) = Xy (Z/p*Z).

e The fibers of the map X,(}) — Xy have no F, points.

"We give thanks to Poonen and Zywina



Subgroups of GL,(%Z,)
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