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Galois Representations

Q ⊂ K ⊂ Q
GK := Aut(K/K)

E[n](K) ∼= (Z/nZ)2

ρE,n : GK → AutE[n] ∼= GL2(Z/nZ)
ρE,`∞ : GK → GL2(Z`) = lim←−

n
GL2 (Z/`nZ)

ρE : GK → GL2(Ẑ) = lim←−
n

GL2 (Z/nZ)



Serre’s Open Image Theorem

Theorem (Serre, 1972)
Let E be an elliptic curve over K without CM. The image

ρE(GK) ⊂ GL2(Ẑ)

of ρE is open.

Note:

GL2(Ẑ) ∼=
∏
`

GL2(Z`)

Thus ρE,`∞ is surjective for all but finitely many `.

For CM curves, see Lozano-Robledo’s paper and work by Bourdon,
Clark, and Pollack.

https://arxiv.org/abs/1809.02584


Image of Galois

ρE,n : GQ � H(n) ↪→ GL2(Z/nZ)

Q

GQ Q ker ρE,n Q(E[n])

H(n)

Q




Problem (Mazur’s “program B”)
Classify all possibilities for H(n).



Mazur’s Program B
As presented at Modular functions in one variable V in Bonn

Mazur - Rational points on modular curves (1977)



Example - torsion on an elliptic curve

If E has a K-rational torsion point P ∈ E(K)[n] (of exact order n) then:

H(n) ⊂
(

1 ∗
0 ∗

)
since for σ ∈ GK and Q ∈ E(K)[n] such that E(K)[n] ∼= 〈P,Q〉,

σ(P) = P
σ(Q) = aσP + bσQ



Example - Isogenies

If E has a K-rational, cyclic isogeny φ : E → E′ with kerφ = 〈P〉 then:

H(n) ⊂
(
∗ ∗
0 ∗

)
since for σ ∈ GK and Q ∈ E(K)[n] such that E(K)[n] ∼= 〈P,Q〉,

σ(P) = aσP
σ(Q) = bσP + cσQ



Example - other maximal subgroups

Normalizer of a split Cartan:

Nsp = <
(
∗ 0
0 ∗

)
,

(
0 1
−1 0

)
>

H(n) ⊂ Nsp and H(n) 6⊂ Csp iff
there exists an unordered pair {φ1, φ2} of cyclic isogenies,
whose kernels intersect trivially,
neither of which is defined over K,
but which are both defined over some quadratic extension of K,
and which are Galois conjugate.



Example - other maximal subgroups

F∗p2 acts on Fp2 ∼= Fp × Fp

Normalizer of a non-split Cartan:

Cns = im
(
F∗p2 → GL2(Fp)

)
⊂ Nns

H(n) ⊂ Nns and H(n) 6⊂ Cns iff
E admits a “necklace” (Rebolledo, Wuthrich)



Image of Galois

ρE,n : GQ � H(n) ↪→ GL2(Z/nZ)

Q

GQ Q ker ρE,n Q(E[n])

H(n)

Q




Problem (Mazur’s “program B”)
Classify all possibilities for H(n).



Modular curves

Definition
X(N)(K) := {(E/K,P,Q) : E[N] = 〈P,Q〉} ∪ {cusps}
X(N)(K) 3 (E/K,P,Q)⇔ ρE,N(GK) = {I}

Let Γ(N) ⊂ H ⊂ GL2(Ẑ). The minimal such N is the level of H.

Definition
XH := X(N)/H(N) (where H(N) is the image of H in GL2(Z/NZ))

XH(K) 3 (E/K, ι)⇔ ρE,N(GK) ⊂ H(N)

Stacky disclaimer
This is only true up to twist; there are some subtleties if

1 j(E) ∈ {0, 123} (plus some minor group theoretic conditions), or
2 if −I ∈ H.



Rational Points on modular curves

Mazur’s program B
Compute XH(Q) for all H.

Remark
Sometimes XH ∼= P1 or elliptic with rank XH(Q) > 0.
Some XH have exceptional points (i.e, non-cusp non-CM points).
Can compute g(XH) group theoretically (via Riemann–Hurwitz).

Fact

g(XH), γ(XH)→∞ as
[
GL2(Ẑ) : H

]
→∞.



(Serre) Sample subgroup H ⊂ GL2(Ẑ)

kerφ2 ⊂ H(8) ⊂

φ2
��

GL2(Z/8Z)

��

dimF2 kerφ2 = 3

I + 2M2(Z/2Z) ⊂ H(4) =

φ1
��

GL2(Z/4Z)

��

dimF2 kerφ1 = 4

H(2) = GL2(Z/2Z)

χ : GL2(Z/8Z)→ GL2(Z/2Z)× (Z/8Z)∗ → Z/2Z× (Z/8Z)∗ ∼= F3
2.

χ = sgn× det

H(8) := χ−1(G), G ⊂ F3
2.



A typical subgroup H ⊂ GL2(Ẑ)

kerφ4 ⊂ H(32) ⊂

φ4
��

GL2(Z/32Z)

��

dimF2 kerφ4 = 4

kerφ3 ⊂ H(16) ⊂

φ3
��

GL2(Z/16Z)

��

dimF2 kerφ3 = 3

kerφ2 ⊂ H(8) ⊂

φ2
��

GL2(Z/8Z)

��

dimF2 kerφ2 = 2

kerφ1 ⊂ H(4) ⊂

φ1
��

GL2(Z/4Z)

��

dimF2 kerφ1 = 3

H(2) = GL2(Z/2Z)



Non-abelian entanglements

There exists a surjection θ : GL2(Z/3Z)→ GL2(Z/2Z).

H(6) := Γθ

���� �� ��

⊂

GL2(Z/6Z)

ww ''

GL2(Z/2Z) GL2(Z/3Z)

Brau–Jones
im ρE,6 ⊂ H(6)⇔ j(E) = 21033t3(1− 4t3)⇒ K(E[2]) ⊂ K(E[3])

XH ∼= P1 j−→ X(1)



Main conjecture

Conjecture (Serre)
Let E be an elliptic curve over Q without CM. Then for ` > 37, ρE,` is
surjective.

In other words, conjecturally, ρE,`∞ = GL2(Z`) for ` > 37.



“Vertical” image conjecture

Conjecture
There exists a constant N such that for every E/Q without CM[

GL2(Ẑ) : ρE(GQ)
]
≤ N.

Remark
This follows from the “` > 37” conjecture.

Problem
Assume the “` > 37” conjecture and compute N.



Labeling subgroups of GL2(Ẑ) up to conjugacy

Definition

When det(H) = Ẑ× these labels have the form N.i.g.n, where N is
the level, i is the index, g is the genus, and n is a tiebreaker given by
ordering the subgroups of GL2(N).

Example
• The Borel subgroup B(13) has label 13.14.0.1.
• The normalizer of the split Cartan Nsp(13) has label 13.91.3.1.
• The normalizer of the nonsplit Cartan Nns(13) has label
13.78.3.1.
• The maximal S4 exceptional group S4(13) has label 13.91.3.2.

https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.14.0.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.78.3.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.2


Obligatory XKCD cartoon



Obligatory XKCD cartoon



Main Theorem

Definition
A point (E, ι) ∈ XH(K) is exceptional if XH(K) is finite and End E = Z.

Theorem (Rouse–Sutherland–ZB 2021)
Let ` prime, E/Q be a non-CM elliptic curve, and H = ρE,`∞(GQ).
Then exactly one of the following is true:

1 XH(Q) is infinite and H is listed in (Sutherland–Zywina 2017);
2 XH has a rational exceptional point listed in Table 1;
3 H ≤ Nns(33),Nns(52),Nns(72),Nns(112), or Nns(`) for some ` > 13;
4 H is a subgroup of 49.179.9.1 or 49.196.9.1.

We conjecture that cases (3) and (4) never occur.
If they do, the exceptional points have extraordinarily large heights
(e.g. 1010200

for X+
ns(112)(Q)).

https://arxiv.org/abs/2106.11141
https://arxiv.org/abs/1605.03988


label level notes j-invariants/models of exceptional points

16.64.2.1 24 Nns(16) −218 · 3 · 53 · 133 · 413 · 1073/1716, −221 · 33 · 53 · 7 · 133 · 233 · 413 · 1793 · 4093/7916

16.96.3.335 24 H(4) ( Nsp(4) 2573/28

16.96.3.343 24 H(4) ( Nsp(4) 173 · 2413/24

16.96.3.346 24 H(4) ( Nsp(4) 24 · 173

16.96.3.338 24 H(4) ( Nsp(4) 211

32.96.3.230 25 H(4) ( Nsp(4) −33 · 53 · 473 · 12173/(28 · 318)

32.96.3.82 25 H(8) ( Nsp(8) 33 · 56 · 133 · 233 · 413/(216 · 314)

25.50.2.1 52 H(5) = Nns(5) 24 · 32 · 57 · 233

25.75.2.1 52 H(5) = Nsp(5) 212 · 33 · 57 · 293/75

7.56.1.2 7 ( Nns(7) 33 · 5 · 75/27

7.112.1.2 7 −I 6∈ H y2 + xy + y = x3 − x2 − 2680x− 50053, y2 + xy + y = x3 − x2 − 131305x + 17430697

11.60.1.3 11 ( B(11) −11 · 1313

11.120.1.8 11 −I 6∈ H y2 + xy + y = x3 + x2 − 30x− 76
11.120.1.9 11 −I 6∈ H y2 + xy = x3 + x2 − 2x− 7
11.60.1.4 11 ( B(11) −112

11.120.1.3 11 −I 6∈ H y2 + xy = x3 + x2 − 3632x + 82757
11.120.1.4 11 −I 6∈ H y2 + xy + y = x3 + x2 − 305x + 7888

13.91.3.2 13 S4(13) 24 · 5 · 134 · 173/313 , −212 · 53 · 11 · 134/313 , 218 · 33 · 134 · 1273 · 1393 · 1573 · 2833 · 929/(513 · 6113)

17.72.1.2 17 ( B(17) −17 · 3733/217

17.72.1.4 17 ( B(17) −172 · 1013/2

37.114.4.1 37 ( B(37) −7 · 113

37.114.4.2 37 ( B(37) −7 · 1373 · 20833

Table 1. All known exceptional groups, j-invariants, and points of prime power level.

https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.64.2.1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.335
https://www.lmfdb.org/EllipticCurve/Q/3362/a/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.343
https://www.lmfdb.org/EllipticCurve/Q/3362/a/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.346
https://www.lmfdb.org/EllipticCurve/Q/200/b/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=16.96.3.338
https://www.lmfdb.org/EllipticCurve/Q/200/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=32.96.3.230
https://www.lmfdb.org/EllipticCurve/Q/17918/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=32.96.3.82
https://www.lmfdb.org/EllipticCurve/Q/17918/b/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=25.50.2.1
https://www.lmfdb.org/EllipticCurve/Q/396900/e/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=25.75.2.1
https://www.lmfdb.org/EllipticCurve/Q/21175/bm/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=7.56.1.2
https://www.lmfdb.org/EllipticCurve/Q/2450/i/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=7.112.1.2
https://www.lmfdb.org/EllipticCurve/Q/2450/y/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.60.1.3
https://www.lmfdb.org/EllipticCurve/Q/1089/i/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.8
https://www.lmfdb.org/EllipticCurve/Q/121/a/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.9
https://www.lmfdb.org/EllipticCurve/Q/121/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.60.1.4
https://www.lmfdb.org/EllipticCurve/Q/1089/c/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.3
http://lmfdb.org/EllipticCurve/Q/121/c/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=11.120.1.4
https://www.lmfdb.org/EllipticCurve/Q/121/a/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=13.91.3.2
https://www.lmfdb.org/EllipticCurve/Q/50700/z/1
https://www.lmfdb.org/EllipticCurve/Q/61347/bb/1
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=17.72.1.2
https://www.lmfdb.org/EllipticCurve/Q/14450/o/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=17.72.1.4
https://www.lmfdb.org/EllipticCurve/Q/14450/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=37.114.4.1
https://www.lmfdb.org/EllipticCurve/Q/1225/b/2
https://www.lmfdb.org/EllipticCurve/Q/?cm=noCM&galois_image=37.114.4.2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1


Arithmetically maximal level `n groups with ` ≤ 13 with XH(Q) unknown.

label level group genus

27.243.12.1 33 Nns(33) 12

25.250.14.1 52 Nns(52) 14

49.1029.69.1 72 Nns(72) 69

49.147.9.1 72
〈(

16 6
20 45

)
,
(

20 17
40 36

)〉
9

49.196.9.1 72
〈(

42 3
16 31

)
,
(

16 23
8 47

)〉
9

121.6655.511.1 112 Nns(112) 511

Each has rank = genus, rational CM points, no rational cusps, and
no known exceptional points.



Summary of `-adic images of Galois for non-CM E/Q.

` 2 3∗ 5∗ 7∗ 11∗ 13 17∗ 37∗ other∗

subgroups 1208 47 25 17 8 12 3 3 1
exceptional 7 0 2 2 6 1 2 2 0

unexceptional 1201 47 23 15 2 11 1 1 1
max level 32 27 25 7 11 13 17 37 1

max index 96 72 120 112 120 91 72 114 1
max genus 3 0 2 1 1 3 1 4 0

Summary of H ≤ GL2(Z`) which occur as ρE,`∞(GQ) for some non-CM E/Q.

Starred primes depend on the conjecture that cases (3) and (4) of our
theorem do not occur.

In particular, we conjecture that there are 1207, 46, 24, 16, 7, 11, 2, 2 proper
subgroups of GL2(Z`) that arise as ρE,`∞(GQ) for non-CM E/Q for
` = 2, 3, 5, 7, 11, 13, 17, 37 and none for any other `.



Applications

Theorem (R. Jones, Rouse, ZB)
1 Arithmetic dynamics: let P ∈ E(Q).
2 How often is the order of P̃ ∈ E(Fp) odd?
3 Answer depends on ρE,2∞(GQ).
4 Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)
Classification of E(Q(3∞))tors

Theorem (Gonzalez-Jimenez, Lozanon-Robledo)
Classify E/Q with ρE,N(GQ) abelian.

Theorem (Rouse–Sutherland–ZB)
Improved algorithms for computing ρE,n(GQ).



Arithmetically maximal groups
Definition

We say that an open subgroup H ⊆ GL2(Ẑ) is arithmetically maximal if
1 det(H) = Ẑ× (necessary for Q-points),
2 a conjugate of

(
1 0
0 −1

)
or
(

1 1
0 −1

)
lies in H (necessary for R-points),

3 j(XH(Q)) is finite but j(XH′(Q)) is infinite for H ( H′ ⊆ GL2(Ẑ).

Arithmetically maximal groups H arise as maximal subgroups of an H′

with XH′(Q) infinite.

Theorem (Sutherland–Zywina 2017)
For ` = 2, 3, 5, 7, 11, 13 there are 1208, 47, 23, 15, 2, 11 subgroups
H ≤ GL2(Ẑ) of `-power level with XH(Q) infinite, and only H = GL2(Ẑ)
for ` > 13.

This allows us to compute explicit upper bounds on the level and index
of arithmetically maximal subgroup of prime power level ` and we can
then exhaustively enumerate them.

https://arxiv.org/abs/1605.03988
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Subgroups of GL2(Z13)



Subgroups of GL2(Z2)



Steps of the proof

1 Compute the set S of arithmetically maximal subgroups of `-power
level for ` ≤ 37 (for all ` > 37 we already know Nns(`) is the only possible
exceptional group).

2 For H ∈ S check for local obstructions and compute the isogeny
decomposition of the Jacobian of XH and the analytic ranks of all its
simple factors.

3 For H ∈ S compute equations for XH and jH : XH → X(1) (if needed).
In several cases we can prove XH(Q) is empty without a model for XH.

4 For H ∈ S with −I ∈ H determine the rational points in XH(Q) (if
possible). In several cases we are able to exploit recent progress by
others (` = 13 for example).

5 For H ∈ S with −I 6∈ H compute equations for the universal curve
E → U, where U ⊆ XH is the locus with j(P) 6= 0, 1728,∞.



Subgroups of GL2(Z11)

1.1.0.1

11.12.1.1

11.55.1.1

11.60.1.3 11.60.1.4

11.120.1.8 11.120.1.911.120.1.3 11.120.1.4



Subgroups of GL2(Z3)

1.1.0.1

3.3.0.1

3.4.0.1

3.6.0.1

3.8.0.13.8.0.2

9.9.0.1

3.12.0.19.12.0.1 9.12.0.2

9.18.0.1 9.18.0.2

3.24.0.19.24.0.1 9.24.0.29.24.0.3 9.24.0.4

9.27.0.19.27.0.2

9.36.0.1 9.36.0.2 9.36.0.39.36.0.4 9.36.0.59.36.0.6 9.36.0.7 9.36.0.89.36.0.927.36.0.1

9.72.0.1 9.72.0.2 9.72.0.3 9.72.0.49.72.0.5 9.72.0.69.72.0.7 9.72.0.8 9.72.0.99.72.0.109.72.0.11 9.72.0.129.72.0.13 9.72.0.14 9.72.0.159.72.0.1627.72.0.127.72.0.2



Subgroups of GL2(Z5)

1.1.0.1

5.5.0.1

5.6.0.1

5.10.0.1

5.12.0.15.12.0.2

5.15.0.1

5.24.0.1 5.24.0.25.24.0.3 5.24.0.4

5.30.0.1 5.30.0.225.30.0.1

25.50.2.1

5.60.0.1 25.60.0.125.60.0.2

25.75.2.1

5.120.0.1 5.120.0.2 25.120.0.1 25.120.0.225.120.0.3 25.120.0.4



Subgroups of GL2(Z7)

1.1.0.1

7.8.0.1

7.16.0.17.16.0.2

7.21.0.1

7.24.0.1 7.24.0.27.24.0.3

7.28.0.1

7.48.0.1 7.48.0.27.48.0.37.48.0.4 7.48.0.57.48.0.6

7.56.1.2

7.112.1.2



Finding Equations for XH – Basic idea

1 The canoncial map C ↪→ Pg−1 is given by P 7→ [ω1(P) : · · · : ωg(P)].
2 For a general curve, this is an embedding, and the relations are

quadratic.
3 For a modular curve,

Mk(H) ∼= H0(XH,Ω
1(∆)⊗k/2)

given by
f (z) 7→ f (z) dz⊗k/2.



Equations – Example: X1(17) ⊂ P4

Cusp forms

q− 11q5 + 10q7 + O(q8)

q2 − 7q5 + 6q7 + O(q8)

q3 − 4q5 + 2q7 + O(q8)

q4 − 2q5 + O(q8)

q6 − 3q7 + O(q8)

xu + 2xv− yz + yu− 3yv + z2 − 4zu + 2u2 + v2 = 0

xu + xv− yz + yu− 2yv + z2 − 3zu + 2uv = 0

2xz− 3xu + xv− 2y2 + 3yz + 7yu− 4yv− 5z2 − 3zu + 4zv = 0



Computing models of modular curves
• We introduce a variety of improvements and tricks to compute

models of various XH.

• See Rouse’s VaNTAGe talk for more details and interesting
examples.

• To compute jH : XH → X(1) we represent E4 and E6 as ratios of
elements of the canonical ring.

• We show that E4 is a rational function of an element of weight k
and weight k − 4 if

k ≥ 2e∞ + e2 + e3 + 5g− 4
2(g− 1)

• We used this method to compute canonical models for many
curves of large genus.

• See Assaf’s recent paper and Zywina’s BIRS talk for other
efficient approaches.

https://youtu.be/L_Il_sJymEs?mute=1;autoplay=0
https://arxiv.org/abs/2002.07212
https://www.birs.ca/events/2017/5-day-workshops/17w5065/videos/watch/201705291503-Zywina.html


Explicit methods: highlight reel

Local methods
Chabauty and Elliptic Chabauty
Mordell–Weil sieve
étale descent
Pryms
Equationless étale descent via group theory
New techniques for computing Aut C

Nonabelian Chabauty
“Equationless” local methods and Mordell–Weil sieve
Greenberg Transforms (and big computations)
Novel variants of existing techniques
Modularity of isogeny factors of JH (w/ Voight)



Computing XH(Fp) “via moduli”
Idea: one can compute #X1(N)(Fp) by enumerating elliptic curves over
Fp, then computing their N torsion subgroups.

Deligne–Rapoport 1973
The modular curves XH and YH are coarse spaces for the stacksMH

andM0
H that parameterize elliptic curves E with H-level structure, by

which we mean an equivalence class [ι]H of isomorphisms
ι : E[N]→ Z(N)2, where ι ∼ ι′ if ι = h ◦ ι′ for some h ∈ H.

• YH(k̄) = {(j(E), α) : α = HgAE} with AE := {ϕN : ϕ ∈ Aut(Ek̄)},
and YH(k) = YH(k̄)Gk .

• X∞H (k) = {α ∈ H\GL2(N)/U(N) : αχN(GK) = α} where
U(N) := 〈

(
1 1
0 1

)
,−1〉).

• For k = Fq, to compute #XH(k) = #YH(k) + #X∞H (k) count double
cosets fixed by Gk.

• See Drew’s Slides for a nice summary of the implementation.

https://math.mit.edu/~drew/UpstateNY2021.pdf


Arithmetically maximal H of `-power level for which
XH(Fp) = ∅ for some p 6= ` ≤ 37

label level generators p rank genus

16.48.2.17 24
(

11 9
4 13

)
,
(

13 5
4 11

)
,
(

1 9
12 7

)
,
(

1 9
0 5

)
3, 11 0 2

27.108.4.5 33
(

4 25
6 14

)
,
(

8 0
3 1

)
7, 31 0 4

25.150.4.2 52
(

7 20
20 7

)
,
(

22 2
13 22

)
2 0 4

25.150.4.7 52
(

24 24
0 18

)
,
(

2 5
0 23

)
3, 23 4 4

25.150.4.8 52
(

8 4
0 23

)
,
(

16 7
0 8

)
2 0 4

25.150.4.9 52
(

2 0
0 8

)
,
(

3 18
0 14

)
2 0 4

49.168.12.1 72
(

39 6
36 24

)
,
(

11 9
24 2

)
2 3 12

13.84.2.2 13
(

3 7
0 8

)
,
(

12 4
0 12

)
2 0 2

13.84.2.3 13
(

9 2
0 7

)
,
(

4 4
0 7

)
3 0 2

13.84.2.4 13
(

8 12
0 10

)
,
(

8 3
0 9

)
2 0 2

13.84.2.6 13
(

9 0
0 4

)
,
(

11 3
0 10

)
3 0 2



Decomposing the Jacobian of XH

Let H be an open subgroup of GL2(Ẑ) of level N.
Let JH denote the Jacobian of XH.

Theorem (Rouse–Sutherland–Voight–ZB 2021)
Each simple factor A of JH is isogenous to Af for a weight-2
eigenform f on Γ0(N2) ∩ Γ1(N).

Corollary (Kolyvagin’s theorem)
If A is an isogeny factor of XH, and if the analytic rank of A is zero,
then A(Q) is finite.

Corollary (Decomposition)
We can decompose JH up to isogeny using linear algebra and
point-counting.

https://arxiv.org/pdf/2106.11141.pdf#page=42


Mordell–Weil sieve

Let X be a curve and A be an abelian variety.

X(Q)

��

X(Fp)

If X(Fp) is empty for some p then X(Q) is empty.



Mordell–Weil sieve

Let X be a curve and A be an abelian variety.

X(Q) //

��

A(Q)

β

��

X(Fp)
π // A(Fp).

If X(Fp) is empty for some p then X(Q) is empty.
If imπ ∩ imβ is empty then X(Q) is empty.



Mordell–Weil sieve

Let X be a curve and A be an abelian variety.

X(Q) //

��

A(Q)

β

��∏
p∈S X(Fp)

πS //
∏

p∈S A(Fp).

If X(Fp) is empty for some p then X(Q) is empty.
If imπ ∩ imβ is empty then X(Q) is empty.
This is explicit and is implemented in Magma.



An equationless sieve for the group 121.605.41.1

The curve XH has local points everywhere, and analytic rank = genus = 41.

H(11) ⊂ Nns(11), so XH maps to X+
ns(11), which is an elliptic curve of rank 1.

XH(Q) //

��

X+
ns(11)(Q)

β

��

〈R〉 ∼= Z

∏
p∈S XH(Fp)

πS //
∏

p∈S X+
ns(11)(Fp)

We can compute imπS without equations for XH or πS

A point of X+
ns(11)(Fp) corresponds to E with ρE,11(GFp) ⊂ Nns(11)

and lifts to a point of XH(Fp) if and only if ρE,121(GFp) ⊂ H(121).

For p = 13 the image of any point in YH(Q) maps to nR with n ≡ 1, 5 mod 7.

For p = 307 any point in YH(Q) maps to nR with n ≡ 2, 3, 4, 7, 10, 13 mod 14.

Therefore YH(Q) = ∅ (and in fact XH(Q) = ∅; there are no rational cusps).



Gargantuan models of modular curves1

• We computed canonical models (over Q) for 27.729.43.1
(resp. 25.625.36.1).

• We use these models to prove that XH has no Q3 (resp. Q5) as
follows.

• These models have very bad reduction at p = 3 (resp. 5).
(They’re not even flat.)

• XH(Fp) 6= ∅ for all p, but XH(Z/p2Z) = ∅ for p = 3 (resp. 5).

• The “Greenberg transform” (i.e., the “Wittferential tangent space”
of Buium) is adjoint to Witt vectors: X(1)

H (Fp) = XH(Z/p2Z).

• The fibers of the map X(1)
H → XH have no Fp points.

1We give thanks to Poonen and Zywina



Subgroups of GL2(Z2)


