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Basic Problem (Solving Diophantine Equations)

Let f1, . . . , fm be polynomials with integer coefficients, e.g.,

x2 + y2 + 1

= 0

x3 − y2 − 2

= 0

2y2 + 17x4 − 1

= 0

Basic problem: solve polynomial equations
Describe the set

V(f1, . . . , fm) =
{

(a1, . . . , an) ∈ Zn : ∀i, fi(a1, . . . , an) = 0
}
,

i.e., the set of integer solutions to those polynomials

Fact
Solving Diophantine equations is difficult.
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Hilbert’s Tenth Problem

Theorem (Davis–Putnam–Robinson 1961, Matijasevič 1970)
There does not exist an algorithm solving the following problem:

input: integer polynomials f1, . . . , fm in variables x1, ..., xn;
output: YES /NO according to whether the set of solutions{

(a1, . . . , an) ∈ Zn : ∀i, fi(a1, . . . , an) = 0
}

is non-empty.

This is known to be true for many other cases (e.g., C,R,Fq,Qp,C(t)).

This is still unknown in many other cases (e.g., Q).



Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p ≥ 3 the only integer solutions to the equation

xp + yp = zp

are integer multiples of the triples

(0, 0, 0), (±1,∓1, 0), ±(1, 0, 1), ±(0, 1, 1).

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

https://mathshistory.st-andrews.ac.uk/Miller/stamps/


Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p ≥ 3 the only integer solutions to the equation

xp + yp = zp

are integer multiples of the triples

(0, 0, 0), (±1,∓1, 0), ±(1, 0, 1), ±(0, 1, 1).

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

https://mathshistory.st-andrews.ac.uk/Miller/stamps/


Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p ≥ 3 the only integer solutions to the equation

xp + yp = zp

are integer multiples of the triples

(0, 0, 0), (±1,∓1, 0), ±(1, 0, 1), ±(0, 1, 1).

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

https://mathshistory.st-andrews.ac.uk/Miller/stamps/


Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p ≥ 3 the only integer solutions to the equation

xp + yp = zp

are integer multiples of the triples

(0, 0, 0), (±1,∓1, 0), ±(1, 0, 1), ±(0, 1, 1).

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

https://mathshistory.st-andrews.ac.uk/Miller/stamps/


Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p ≥ 3 the only integer solutions to the equation

xp + yp = zp

are integer multiples of the triples

(0, 0, 0), (±1,∓1, 0), ±(1, 0, 1), ±(0, 1, 1).

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

https://mathshistory.st-andrews.ac.uk/Miller/stamps/


Fermat’s Last Theorem - aftermath
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Fermat trolling

See https://youtu.be/ReOQ300AcSU?si=--fAdsdPttt4HR3N
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Basic Problem: f1, . . . , fm ∈ Z[x1, ..., xn]

Qualitative:
I Does there exist a solution?
I Do there exist infinitely many solutions?
I Does the set of solutions have some extra structure

(e.g., geometric structure, group structure).

Quantitative
I How many solutions are there?
I How large is the smallest solution?
I How can we explicitly find all solutions? (With proof?)

Implicit question
I Why do equations have (or fail to have) solutions?
I Why do some have many and some have none?
I What underlying mathematical structures control this?
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Example: Pythagorean triples

32+ 42 = 52

52+122= 132

72+242= 252

Lemma
The equation

x2 + y2 = z2

has infinitely many non-zero coprime solutions.



Pythagorean triples

Slope = t = y
x+1

x = 1−t2

1+t2

y = 2t
1+t2



Pythagorean triples

Lemma
The solutions to

a2 + b2 = c2

(with c 6= 0) are all multiples of the triples

a = 1− t2 b = 2t c = 1 + t2



The Mordell Conjecture

Example
The equation y2 + x2 = 1 has infinitely many solutions.

Theorem (Faltings)
For n ≥ 5, the equation

y2 + xn = 1

has only finitely many solutions.

Theorem (Faltings)
For n ≥ 5, the equation

y2 = f (x)

has only finitely many solutions if f (x) is squarefree, with degree > 4.
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Fermat Curves

Question
Why is Fermat’s last theorem believable?

1 xn + yn − zn = 0 looks like a surface (3 variables)
2 xn + yn − 1 = 0 looks like a curve (2 variables)



Mordell Conjecture

Example

y2 = −(x2 − 1)(x2 − 2)(x2 − 3)

This is a cross section of a two holed torus.

The genus is the number of holes.

Conjecture (Mordell, 1922)
A curve of genus g ≥ 2 has only finitely many rational solutions.



Fermat Curves

Question
Why is Fermat’s last theorem believable?

1 xn + yn − zn = 0 looks like a surface (3 variables)
2 xn + yn − 1 = 0 looks like a curve (2 variables)
3 and has genus

(n− 1)(n− 2)/2

which is ≥ 2 iff n ≥ 4.



Fermat Curves

Question
What if n = 3?

1 x3 + y3 − 1 = 0 is a curve of genus (3− 1)(3− 2)/2 = 1.
2 We were lucky; Ax3 + By3 = Cz3 can have infinitely many solutions.



Congruent number problem

x2 + y2 = z2, xy = 2 · 6

32 + 42 = 52, 3 · 4 = 2 · 6



Congruent number problem

x2 + y2 = z2, xy = 2 · 157



Assume the Birch–Swinnerton-Dyer conjectures

If you assume $1,000,000 worth of conjectures, then the equations

x2 + y2 = z2, xy = 2 · 157

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

x = 157841·4947203·52677109576
2·32·5·13·17·37·101·17401·46997·356441

y = 2·32·5·13·17·37·101·157·17401·46997·356441
157841·4947203·52677109576

z = 20085078913·1185369214457·942545825502442041907480
2·32·5·13·17·37·101·17401·46997·356441·157841·4947203·52677109576

The denominator of z has 44 digits!
How did anyone ever find this solution?

(Heegner Points)
“Next” soluton has 176 digits!
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Back of the envelope calculation (as of 2011)

x2 + y2 = z2, xy = 2 · 157

Num, den(x, y, z) ≤ 10 ∼ 106 many, 1 min on Emory’s computers.

Num, den(x, y, z) ≤ 1044 ∼ 10264 many, 10258 mins = 10252 years.
109 many computers in the world – so 10243 years
Expected time until ‘heat death’ of universe – 10100 years.
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Fermat Surfaces

Conjecture
The only solutions to the equation

xn + yn = zn + wn, n ≥ 5

satisfy xyzw = 0 or lie on the lines ‘lines’ x = z, y = w (and
permutations).



The Swinnerton-Dyer K3 surface

x4 + 2y4 = 1 + 4z4



The Swinnerton-Dyer K3 surface

x4 + 2y4 = 1 + 4z4

Two ‘obvious’ solutions – (±1 : 0 : 0).



The Swinnerton-Dyer K3 surface

x4 + 2y4 = 1 + 4z4

Two ‘obvious’ solutions – (±1 : 0 : 0).
The next smallest solutions are

(
±1484801

1169407 ,±
1203120
1169407 ,±

1157520
1169407

)
.

Problem
Find another solution. (Probably impossible.)

Back of envelope calcluation
1 1016 years to find via brute force.
2 Age of the universe – 13.75± .11 billion years (roughly 1010).



Sums of cubes

1 = 13 + 03 + 03

2 = 13 + 13 + 03

3 = 13 + 13 + 13

3 = 43 + 43 + (−5)3

4 6= x3 + y3 + z3

5 6= x3 + y3 + z3

6 = 13 + 13 + 23

Conjecture (Heath-Brown)
The equation

x3 + y3 + z3 = n

has an integer solution if and only if n is not 4 or 5 mod 9.



Solved by Booker–Sutherland

32 6= x3 + y3 + z3

33 =

88661289752875283 + (−8778405442862239)3 + (−2736111468807040)3

42 = (−80538738812075974)3 + 804357581458175153 + 126021232973356313

3 = 5699368212219623807203 + (−569936821113563493509)3 + (−472715493453327032)3

114 = x3 + y3 + z3?

https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/
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“Generalized” Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to x2 + y3 = z7 are the 16 triples

(±1,−1, 0), (±1, 0, 1), ±(0, 1, 1),

(±3,−2, 1),

(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),

(±21063928,−76271, 17) .
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Generalized Fermat Equations

Problem
What are the solutions to the equation xa + yb = zc?

Theorem (Darmon and Granville)
Fix a, b, c ≥ 2. Then the equation xa + yb = zc has only finitely many
coprime integer solutions iff χ = 1

a + 1
b + 1

c − 1 ≤ 0.

µa µb µc
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Known Solutions to xa + yb = zc with 1
a +

1
b +

1
c < 1

1p + 23 = 32, 25 + 72 = 34

73 + 132 = 29, 27 + 173 = 712

35 + 114 = 1222

177 + 762713 = 210639282

14143 + 22134592 = 657

92623 + 1531228322 = 1137

438 + 962223 = 300429072

338 + 15490342 = 156133

Problem (Beal’s conjecture)

These are all solutions with 1
a + 1

b + 1
c − 1 < 0.
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Generalized Fermat Equations – Known Solutions

Conjecture (Beal, Granville, Tijdeman–Zagier)
This is a complete list of coprime non-zero solutions such that
1
a + 1

b + 1
c − 1 < 0.

$1,000,000 prize for proof of conjecture...
...or even for a counterexample.
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Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to x2 + y3 = z7 are the 16 triples

(±1,−1, 0), (±1, 0, 1), ±(0, 1, 1), (±3,−2, 1),

(±71,−17, 2), (±2213459, 1414, 65), (±15312283, 9262, 113),

(±21063928,−76271, 17) .
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Examples of Generalized Fermat Equations

Theorem (Darmon, Merel)
Any pairwise coprime solution to the equation

xn + yn = z2, n > 4

satisfies xyz = 0.
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Other applications of the modular method
Ideas behind the proof of FLT permeate the study of diophantine
problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)
The only Fibonacci numbers that are perfect powers are

F1 = F2 = 1, F6 = 8, F12 = 144.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Theorem (Silliman–Vogt; 2013 REU)
0 and 1 are the only perfect powers in the Lucas sequence

L1 = 0,L2 = 1, Ln = 3Ln−1 − 2Ln−2.

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, . . . , 2n − 1, . . .
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Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

x2 + y3 = z5

has infinitely many coprime solutions

1
2

+
1
3

+
1
5
− 1 =

1
30

> 0

(T/2)2 + H3 + (f/123)5

1 f = st(t10 − 11t5s5 − s10),
2 H = Hessian of f ,
3 T = a degree 3 covariant of the dodecahedron.
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(a, b, c) such that χ < 0 and the solutions to xa + yb = zc have been determined.

{n, n, n} Wiles,Taylor–Wiles, building on work of many others
{2, n, n} Darmon–Merel, others for small n
{3, n, n} Darmon–Merel, others for small n
{5, 2n, 2n} Bennett
(2, 4, n) Ellenberg, Bruin, Ghioca n ≥ 4
(2, n, 4) Bennett–Skinner; n ≥ 4
{2, 3, n} Poonen–Shaefer–Stoll, Bruin. 6 ≤ n ≤ 9
{2, 2`, 3} Chen, Dahmen, Siksek; primes 7 < ` < 1000 with ` 6= 31
{3, 3, n} Bruin; n = 4, 5
{3, 3, `} Kraus; primes 17 ≤ ` ≤ 10000
(2, 2n, 5) Chen n ≥ 3∗

(4, 2n, 3) Bennett–Chen n ≥ 3
(6, 2n, 2) Bennett–Chen n ≥ 3
(2, 6, n) Bennett–Chen n ≥ 3

(2, 3, 10) ZB
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Faltings’ theorem / Mordell’s conjecture

Theorem (Faltings, Vojta, Bombieri)
Let X be a smooth curve with genus at least 2. Then #X(Q) <∞.

Example
For g ≥ 2, y2 = x2g+1 + 1 has only finitely many solutions with x, y ∈ Q.

Conjecture (Lang, Vojta)
Let X be a variety of general type. Then X(Q) is not (Zariski) dense.



Uniformity

Problem
1 Given X, compute X(Q) exactly.
2 Compute bounds on #X(Q).

Conjecture (Uniformity)
There exists a constant N(g) such that every smooth curve of genus g
over Q has at most N(g) rational points.

Theorem (Caporaso, Harris, Mazur)
Lang’s conjecture⇒ uniformity.



Uniformity numerics
g 2 3 4 5 10 45 g

Bg(Q) 642 112 126 132 192 781 16(g + 1)

y2 = 82342800x6 − 470135160x5 + 52485681x4 + 2396040466x3+

567207969x2 − 985905640x + 247747600

x =− 3898675687/2462651894

y = 414541623698393040986922116885/83905238898871602089890028

Remark
Elkies studied K3 surfaces of the form

y2 = S(t, u, v)

with lots of rational lines, such that S restricted to such a line is a
square.

http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html
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Main Theorem (uniformity for curves of small rank)

Theorem (Katz–Rabinoff–ZB)
Let X be any curve of genus g and let r = rankZ JacX(Q). Suppose
r< g− 2. Then

#X(Q) ≤ 84g2 − 98g + 28

Tools
p-adic integration on annuli

comparison of different analytic continuations of p-adic integration
Non-Archimedean (Berkovich) structure of a curve [BPR]

Combinatorial restraints coming from the Tropical canonical bundle



Coleman’s bound

Theorem (Coleman, 1985)
Let X be a curve of genus g and let r = rankZ JacX(Q). Suppose p > 2g
is a prime of good reduction. Suppose r < g. Then

#X(Q) ≤ #X(Fp) + 2g− 2.

Remark
1 A modified statement holds for p ≤ 2g or for K 6= Q.
2 This does not prove uniformity (since the first good p might be

large).

Tools
p-adic integration and Riemann–Roch



Example (from McCallum–Poonen’s survey paper)

Example

X : y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1

1 Points Pt reducing mod 3 to Q̃ = (0, 1) are given by

x = 3 · t, where t ∈ Z3

y =
√

x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1 = 1 + x2 + · · ·

2

∫ Pt

(0,1)

xdx
y

=

∫ t

0
(x− x3 + · · · )dx



p-adic integration
(Chabauty, Coleman) There exists V ⊂ H0(XQp ,Ω

1
X) with

dimQp V ≥ g− r such that,∫ Q

P
ω = 0 ∀P,Q ∈ X(Q), ω ∈ V
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Chabauty’s method

(p-adic integration) There exists V ⊂ H0(XQp ,Ω
1
X) with

dimQp V ≥ g− r such that∫ Q

P
ω = 0 ∀P,Q ∈ X(Q), ω ∈ V.

(Coleman, via Newton Polygons) Number of zeroes in a residue
disc DP is ≤ 1 + nP, where nP = # (divω ∩ DP)

(Riemann–Roch)
∑

nP = 2g− 2.

(Coleman’s bound)
∑

P∈X(Fp)(1 + nP) = #X(Fp) + 2g− 2.



Stoll’s hyperelliptic uniformity theorem

Theorem (Stoll, 2013)
Let X be a hyperelliptic curve of genus g and let r = rankZ JacX(Q).
Suppose r < g− 2.

Then
#X(Q) ≤ 8(r + 4)(g− 1) + max{1, 4r} · g

Tools
p-adic integration on annuli

comparison of different analytic continuations of p-adic integration
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Comments
Corollary ((Partially) effective Manin-Mumford)
There is an effective constant N(g) such that if g(X) = g, then

# (X ∩ JacX,tors) (Q) ≤ N(g)

Corollary
There is an effective constant N′(g) such that if g(X) = g > 3 and X/Q
has totally degenerate, trivalent reduction mod 2, then

# (X ∩ JacX,tors) (C) ≤ N′(g)

The second corollary is a big improvement
1 It requires working over a non-discretely valued field.
2 The bound only depends on the reduction type.
3 Integration over wide opens (c.f. Coleman) instead of discs and

annuli.



Berkovich picture



Baker–Payne–Rabinoff and the slope formula

(Dual graph Γ of XFp)

(Contraction Theorem) τ : Xan → Γ.

(Combinatorial harmonic analysis/potential theory)
f a meromorphic function on Xan

F := (− log |f |)
∣∣
Γ

associated tropical, piecewise linear function
div F combinatorial record of the slopes of F

(Slope formula) τ∗ div f = div F



Berkovich picture


