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Basic Problem (Solving Diophantine Equations)
Let f1,...,fn be polynomials with integer coefficients, e.g.,
24y +1

x3—y2—2
2y +17x* — 1

Basic problem: solve polynomial equations
Describe the set

Vi, fm) ={(a1,...,an) € Z" : Vi, filay, ..., an) = 0},

i.e., the set of integer solutions to those polynomials

Fact
Solving Diophantine equations is difficult.
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Let f1,...,fn be polynomials with integer coefficients, e.g.,
P+y +1=0

r—y2—-2=0
22 +17x* —1=0

Basic problem: solve polynomial equations
Describe the set

V(fiy. o fm) = {(al,...,an) e7Z" :Vi,f,-(al,...,an)—O},

i.e., the set of integer solutions to those polynomials

Fact
Solving Diophantine equations is difficult.




Hilbert’'s Tenth Problem

Theorem (Davis—Putnam—Robinson 1961, Matijasevi¢ 1970)
There does not exist an algorithm solving the following problem:
input: integer polynomials fi, . . . . f,, in variables xi, ..., x,;
output: YES / NO according to whether the set of solutions
{(al,...,an) eZ" Vi, filar,...,an) = 0}

is non-empty.

This is known to be true for many other cases (e.g., C,R,F,, Q,, C(1)).

This is still unknown in many other cases (e.g., Q).



Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)

For primes p > 3 the only integer solutions to the equation
Y =2

are integer multiples of the triples

(0,0,0), (£1,%1,0), =£(1,0,1), =£(0,1,1).
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Fermat’s Last Theorem - A Marvelous Proof
Theorem (Wiles; Taylor)
For primes p > 3 the only integer solutions to the equation

Y =2
are integer multiples of the triples

(0,0,0), (£1,F1,0), =£(1,0,1), =+(0,1,1).

This took 300 years to prove!
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Fermat trolling



https://youtu.be/ReOQ300AcSU?si=--fAdsdPttt4HR3N

Fermat trolling

x“+ y 7" xn,?1+
x"+ l
2987 S8

See https://youtu.be/Re0Q300AcSU?si=-—fAdsdPttt4HR3N
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Basic Problem: fi,... ,fin € Zxy, ..., x,]

Qualitative:
» Does there exist a solution?
» Do there exist infinitely many solutions?
» Does the set of solutions have some extra structure
(e.g., geometric structure, group structure).

Quantitative
» How many solutions are there?
» How large is the smallest solution?
» How can we explicitly find all solutions? (With proof?)

Implicit question
» Why do equations have (or fail to have) solutions?
» Why do some have many and some have none?
» What underlying mathematical structures control this?



Example: Pythagorean triples

34+47 =5
524+12%2=132
72 4+24%=25?

Lemma
The equation
Py =2

has infinitely many non-zero coprime solutions.




Pythagorean triples

(xy)
(0.1 ,
Slope = =25
{-1,0) B l;tz
L x =1

_ 2
Y= 132




Pythagorean triples

Lemma
The solutions to
@b =c?

(with ¢ # 0) are all multiples of the triples




The Mordell Conjecture

Example
The equation y? + x> = 1 has infinitely many solutions.
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Example

The equation y? + x> = 1 has infinitely many solutions.

Theorem (Faltings)
Forn > 5, the equation

V+x =1
has only finitely many solutions.




The Mordell Conjecture

Example

The equation y? + x> = 1 has infinitely many solutions.

Theorem (Faltings)
Forn > 5, the equation
y2 +x"=1

has only finitely many solutions.

Theorem (Faltings)
Forn > 5, the equation

has only finitely many solutions if f(x) is squarefree, with degree > 4.

v




Fermat Curves

Question
Why is Fermat’s last theorem believable?

@ ' +y'— 7" = 0 looks like a surface (3 variables)
@ ' +y"—1=0looks like a curve (2 variables)



Mordell Conjecture

Example

¥ =~ - 1) -2)(x* - 3)

This is a cross section of a two holed torus.

The genus is the number of holes.

Conjecture (Mordell, 1922)
A curve of genus g > 2 has only finitely many rational solutions.




Fermat Curves

Question
Why is Fermat’s last theorem believable?

@ ' +y'— " = 0looks like a surface (3 variables)
@ ' +y"—1=0looks like a curve (2 variables)
© and has genus

(n—1)(n—-2)/2

which is > 2 iff n > 4.



Fermat Curves

Question
What if n = 3?

Q@ P +y—1=0isacurve of genus 3 —-1)(3—-2)/2 = 1.
@ We were lucky; Ax® + By® = Cz* can have infinitely many solutions.



Congruent number problem

Py =2 xy=2-6

3

3 4+42=5% 3.4=2-6



Congruent number problem

Py =2 xy=2-157

187




Assume the Birch—Swinnerton-Dyer conjectures

If you assume $1,000,000 worth of conjectures, then the equations

P+ =2 xy=2-157

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?
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Assume the Birch—Swinnerton-Dyer conjectures

If you assume $1,000,000 worth of conjectures, then the equations

P+ =2 xy=2-157

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

— 157841-4947203-52677109576
T 2.32.5-13:17-37-101-17401-46997-356441

X

__ 2-32.5-13-17-37-101-157-17401-46997-356441
y= 157841-4947203-52677109576

_ 20085078913-1185369214457-942545825502442041907480
<= 2.37.5.13-17-37-101-17401-46997-356441-157841-4947203-526 77109576

The denominator of z has 44 digits!
How did anyone ever find this solution?
(Heegner Points)

“Next” soluton has 176 digits!



Back of the envelope calculation (as of 2011)
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@ Num, den(x,y,z) < 10 ~ 10° many, 1 min on Emory’s computers.
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Back of the envelope calculation (as of 2011)

¥4y =22 xy=2-157

@ Num, den(x,y,z) < 10 ~ 10° many, 1 min on Emory’s computers.
@ Num, den(x,y, z) < 10% ~ 10?** many, 10**® mins = 10?2 years.
@ 10° many computers in the world — so 10?43 years

@ Expected time until ‘heat death’ of universe — 101 years.




Fermat Surfaces

Conjecture
The only solutions to the equation

Y ="+wn2>5

satisfy xyzw = 0 or lie on the lines ‘lines’x = z, y = w (and
permutations).




The Swinnerton-Dyer K3 surface

X2yt =1 442




The Swinnerton-Dyer K3 surface

x4 2yt =1 447

Two ‘obvious’ solutions — (+1: 0 : 0).



The Swinnerton-Dyer K3 surface

| ryt=1r4t |

@ Two ‘obvious’ solutions — (+1: 0 : 0).

i 1484801 1203120 1157520
@ The next smallest solutions are (+1esq07> £ 11eoi07 T 1120009 ) -

Problem
Find another solution. (Probably impossible.)

Back of envelope calcluation

@ 10" years to find via brute force.
@ Age of the universe — 13.75 + .11 billion years (roughly 10'%).




Sums of cubes

1=1+0+0°
2=14+1°4+0°
3=+ +1°
3=4% 1434 (-5)
440 +y +2
545 +y 472
6=13+13+2°

Conjecture (Heath-Brown)

The equation
X+ y3 +22=n

has an integer solution if and only if n is not 4 or 5 mod 9.




Solved by Booker—Sutherland

REL Y+

33 =

https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/
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Solved by Booker—Sutherland

RNAES+Y 42

33 = 8866128975287528" + (—8778405442862239)° + (—2736111468807040)°

https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/
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Solved by Booker—Sutherland

RNAES+Y 42

33 = 8866128975287528" + (—8778405442862239)° + (—2736111468807040)°
42 = (—80538738812075974) + 80435758145817515° + 12602123297335631°
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Solved by Booker—Sutherland

RNAES+Y 42

33 = 8866128975287528> + (—8778405442862239)° + (—2736111468807040)°
42 = (—80538738812075974)° + 80435758145817515° + 126021232973356313

3 = 569936821221962380720° + (—569936821113563493509)> + (—472715493453327032)°

https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/


https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/

Solved by Booker—Sutherland

RNAES+Y 42

33 = 8866128975287528> + (—8778405442862239)° + (—2736111468807040)°
42 = (—80538738812075974)° + 80435758145817515° + 126021232973356313

3 = 569936821221962380720° + (—569936821113563493509)> + (—472715493453327032)°

114 =x" 4y + 2

>

https://www.quantamagazine.org/why-the-sum-of-three-cubes-is-a-hard-math-problem-20191105/
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Generalized Fermat Equations
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Generalized Fermat Equations

Problem
What are the solutions to the equation x* + y> = z¢?

Theorem (Darmon and Granville)

Fix a,b,c > 2. Then the equation x* + y* = z¢ has only finitely many
coprime integer solutions iff y = 1 + 1 +1 -1 <o.




Known Solutions to x* + y? = z¢ with 1 + 3 +1 < 1

1 4+23=32 247> =3"
7 4+132 =22, 274177 =717
35 4114 = 1227
177 +76271° = 21063928
1414° 4 2213459% = 657
9262% + 153122832% = 1137
438 4+ 962223 = 30042907
33% 4 1549034% = 15613°



Known Solutions to x* + y? = z¢ with 1 + 3 +1 < 1

1 4+23=32 247> =3"
7 4+132 =22, 274177 =717
35 4114 = 1227
177 +76271° = 21063928
1414° 4 2213459% = 657
9262% + 153122832% = 1137
438 4+ 962223 = 30042907
33% 4 1549034% = 15613°

Problem (Beal’s conjecture)
These are all solutions with1 + 1 +1 —1 <.




Generalized Fermat Equations — Known Solutions

Conjecture (Beal, Granville, Tijdeman—Zagier)

This is a complete list of coprime non-zero solutions such that
1 1 1
sty +s—1<0.
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Generalized Fermat Equations — Known Solutions

Conjecture (Beal, Granville, Tijdeman—Zagier)

This is a complete list of coprime non-zero solutions such that
1 1 1
st+5+2—1<0.

$1,000,000 prize for proof of conjecture...
...or even for a counterexample.



Generalized Fermat Equations — Known Solutions

Conjecture (Beal, Granville, Tijdeman—Zagier)

This is a complete list of coprime non-zero solutions such that
1 1 1
sty +s—1<0.

$1,000,000 prize for proof of conjecture...
...or even for a counterexample.
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Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to x> +y* = 7 are the 16 triples

(:l:l,—l,O), (ilvoal)a :l:(()?lal)a (:l:3,—2,1),
(£71,—17,2), (£2213459, 1414,65), (£15312283,9262, 113),
(£21063928, —76271,17) .




Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to x> +y* = 7 are the 16 triples

(:l:l,—l,O), (ilvoal)a :l:(ovlal)a (:l:3,—2,1),
(£71,—17,2), (£2213459, 1414,65), (£15312283,9262, 113),
(£21063928, —76271,17) .




Examples of Generalized Fermat Equations

Theorem (Darmon, Merel)
Any pairwise coprime solution to the equation

X' +y' =77,n>4

satisfies xyz = 0.

n n 2



Other applications of the modular method
Ideas behind the proof of FLT permeate the study of diophantine
problems.
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Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine
problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)
The only Fibonacci numbers that are perfect powers are

Fi=F,=1,Fs=8, F, = 144.

1,1,2,3,5,8,13,21,34,55,89, 144, . ..

Theorem (Silliman—Vogt; 2013 REU)
0 and 1 are the only perfect powers in the Lucas sequence

Li=0I,=1 L,=3L,_1—2L, 5.

0,1,3,7,15,31,63, 127,255,511, 1023,2047, 4095, 8191, ...,2" — 1,. ..
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Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation
Ly =7

has infinitely many coprime solutions

111 1
o o—1=-->0
27375 30~



Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

Ly =7
has infinitely many coprime solutions

1 1 1

1

- 1=—>0
23753 30~
(T/2)* + H* + (f/12°)°

Q f=st(t' — 1195° — 510),
@ H = Hessian of f,

© T = adegree 3 covariant of the dodecahedron.



(a, b, ) such that x < 0 and the solutions to x* +y” = z¢ have been determined.

{n,n,n}
{2,n,n}
{3,n,n}
{5,2n,2n}
(2,4,n)
(2,n,4)
{2,3,n}
{2,2¢,3}
{3,3,n}
{3,3,¢}
(2,2n,5)
(4,2n,3)
(6,2n,2)
(2,6,n)

Wiles, Taylor—Wiles, building on work of many others
Darmon—Merel, others for small n

Darmon—Merel, others for small

Bennett

Ellenberg, Bruin, Ghiocan > 4

Bennett—Skinner; n > 4

Poonen-Shaefer-Stoll, Bruin. 6 <n <9

Chen, Dahmen, Siksek; primes 7 < ¢ < 1000 with ¢ # 31
Bruin; n = 4,5

Kraus; primes 17 < ¢ < 10000

Chenn > 3*

Bennett-Chen n > 3

Bennett—-Chen n > 3

Bennett-Chen n > 3
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{n,n,n}
{2,n,n}
{3,n,n}
{5,2n,2n}
(2,4,n)
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{2,3,n}
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{3,3,n}
{3,3,¢}

Wiles, Taylor—Wiles, building on work of many others
Darmon—Merel, others for small n

Darmon—Merel, others for small

Bennett

Ellenberg, Bruin, Ghiocan > 4

Bennett—Skinner; n > 4

Poonen-Shaefer-Stoll, Bruin. 6 <n <9

Chen, Dahmen, Siksek; primes 7 < ¢ < 1000 with ¢ # 31
Bruin; n = 4,5

Kraus; primes 17 < ¢ < 10000

Chenn > 3*

Bennett-Chen n > 3

Bennett—-Chen n > 3

Bennett-Chen n > 3

ZB



Faltings’ theorem / Mordell’s conjecture

Theorem (Faltings, Vojta, Bombieri)
Let X be a smooth curve with genus at least 2. Then #X(Q) < oc.

Example

For g > 2, y* = x**! + 1 has only finitely many solutions with x,y € Q.

Conjecture (Lang, Vojta)
Let X be a variety of general type. Then X(Q) is not (Zariski) dense.

v




Uniformity

Problem

@ Given X, compute X(Q) exactly.
@ Compute bounds on #X(Q).

Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g
over Q has at most N(g) rational points.

Theorem (Caporaso, Harris, Mazur)
Lang’s conjecture = uniformity.




Uniformity numerics

[ ¢ J 2 3 4 5 10 4[] g |
| B,(Q) [[642 112 126 132 192 781 | 16(g+1) |



http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html

Uniformity numerics

[ ¢ [ 2 3 4 5 10 4[] ¢ |
| B,(Q) || 642 112 126 132 192 781 || 16(g+1) |

y? =82342800x° — 470135160x° + 5248568 1x* + 2396040466x°+
567207969x% — 985905640x + 247747600


http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html

Uniformity numerics

[ ¢ [ 2 3 4 5 10 4[] ¢ |
| B,(Q) || 642 112 126 132 192 781 || 16(g+1) |

y? =82342800x° — 470135160x° + 5248568 1x* + 2396040466x°+
567207969x% — 985905640x + 247747600

x = — 3898675687 /2462651894
y =414541623698393040986922116885/83905238898871602089890028


http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html

Uniformity numerics

[ ¢ [ 2 3 4 5 10 4[] ¢ |
| B,(Q) || 642 112 126 132 192 781 || 16(g+1) |

y? =82342800x° — 470135160x° + 5248568 1x* + 2396040466x°+
567207969x% — 985905640x + 247747600

x = — 3898675687 /2462651894
y =414541623698393040986922116885/83905238898871602089890028

Remark
Elkies studied K3 surfaces of the form

y2 = S(t,u,v)

with lots of rational lines, such that S restricted to such a line is a
square.



http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html

Main Theorem (uniformity for curves of small rank)

Theorem (Katz—Rabinoff-ZB)

Let X be any curve of genus g and let r = ranky, Jacx(Q). Suppose
r<g-—2. Then

#X(Q) < 84g*> — 98g + 28

Tools

p-adic integration on annuli
comparison of different analytic continuations of p-adic integration
Non-Archimedean (Berkovich) structure of a curve [BPR]
Combinatorial restraints coming from the Tropical canonical bundle

v



Coleman’s bound

Theorem (Coleman, 1985)

Let X be a curve of genus g and let r = ranky Jacx(Q). Suppose p > 2g
is a prime of good reduction. Suppose r < g. Then

#X(Q) < #X(Fp) +2g —2.

Remark

@ A modified statement holds for p < 2g or for K # Q.

©@ This does not prove uniformity (since the first good p might be
large).

Tools

p-adic integration and Riemann—Roch




Example (from McCallum—Poonen’s survey paper)

Example

X1y =25+ 85 +22x* + 2223 + 522 + 6 + 1

@ Points P, reducing mod 3 to Q = (0, 1) are given by

x= 3-t, wheret e Zs
y= VA +8x5+22x* + 223 +5x2 +6x+1=1+x>+---

P, t
o x;‘bcz/(x—XS—i-'--)dx
(0,1) 0



p-adic integration
(Chabauty, Coleman) There exists V ¢ H°(Xg,, Q) with
dimg, V > g — r such that,

0
/ w=0 VP,Q € X(Q),w eV
P

Example

X:yP=x048 +22x* + 2263 + 52 + 6x+ 1

@ Points reducing mod 3 to Q = (0, 1) are given by

x= 3-t, wheret e Zj

y= VO F8x5 42264 + 223 52 bx+1=1+x>+---

P, t
o WZ/(x—x3+~-)dx
0,1) Y 0



Chabauty’s method

(p-adic integration) There exists V C H%(Xg,, 2§) with
dimg, V > g — r such that

o
/ w=0 VP,0 € X(Q), w e V.
P

(Coleman, via Newton Polygons) Number of zeroes in a residue
disc Dp is < 1 + np, where np = # (divw N Dp)

(Riemann-Roch) > np =2g — 2.
(Coleman’s bound) > .y, (1 + np) = #X(F)) + 2g — 2.



Stoll’s hyperelliptic uniformity theorem

Theorem (Stoll, 2013)

Let X be a hyperelliptic curve of genus g and let r = ranky Jacx(Q).
Suppose r < g — 2.

Then
#X(Q) <8(r+4)(g—1) + max{1,4r} - g

Tools

p-adic integration on annuli
comparison of different analytic continuations of p-adic integration

v



Main Theorem (uniformity for curves of small rank)

Theorem (Katz—Rabinoff-ZB)

Let X be any curve of genus g and let r = ranky, Jacx(Q). Suppose
r<g-—2. Then

#X(Q) < 84g*> — 98g + 28

Tools

p-adic integration on annuli
comparison of different analytic continuations of p-adic integration
Non-Archimedean (Berkovich) structure of a curve [BPR]
Combinatorial restraints coming from the Tropical canonical bundle

v



Comments

Corollary ((Partially) effective Manin-Mumford)
There is an effective constant N(g) such that if g(X) = g, then

# (X N JaCX,tors) (Q) < N(g)

Corollary

There is an effective constant N'(g) such that if g(X) = g > 3 and X/Q
has totally degenerate, trivalent reduction mod 2, then

# (X N JacX,z‘ors) ((C) < N/(g)

The second corollary is a big improvement

@ It requires working over a non-discretely valued field.
©@ The bound only depends on the reduction type.

© Integration over wide opens (c.f. Coleman) instead of discs and
annuli.




Berkovich picture

Xan




Baker—Payne—Rabinoff and the slope formula

(Dual graph I of Xy,)

(Contraction Theorem) 7: X" — T

(Combinatorial harmonic analysis/potential theory)

f a meromorphic function on X2
F:=(—log|f]) \F associated tropical, piecewise linear function
div F combinatorial record of the slopes of F

(Slope formula) 7, divf = div F



Berkovich picture

Xan




