The canonical ring of a stacky curve

David Zureick-Brown (Amherst College) John Voight (Dartmouth)

AG@PUI virtual seminar

April 30, 2024

Slides available at https://dmzb.github.io/

Let Γ be a Fuchsian group (e.g. $\Gamma = \Gamma_0(N) \subset SL_2(\mathbb{Z})$).

Definition

A modular form for Γ of weight $k \in \mathbb{Z}_{\geq 0}$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that

$$f(\gamma z) = (cz + d)^k f(z)$$
 for all $\gamma \in \Gamma$

and such that the limit $\lim_{z\to *} f(z)$ exists for all cusps *.

Definition

Let $M_k(\Gamma)$ be the \mathbb{C} -vector space of modular forms for Γ of weight k.

Definition (Ring of Modular forms)

$$M(\Gamma) := \bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma)$$

Example

$$M(SL_2(\mathbb{Z})) \cong \mathbb{C}[E_4, E_6]$$

Theorem (Wagreich)

 $M(\Gamma)$ is generated by two elements if and only if

$$\Gamma = SL_2(\mathbb{Z}), \Gamma_0(2), or \Gamma(2).$$

Definition (Ring of Modular forms)

$$M(\Gamma) := \bigoplus_{k \in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma)$$

Example (LMFDB)

$$M(\Gamma_0(11)) \cong \mathbb{C}[E_2, f_E, g_4]/(g_4^2 - F(E_2, f_E))$$

Example (Ji, 1998)

$$M(\Gamma_{2,3,7}) \cong \mathbb{C}[\Delta_{12}, \Delta_{16}, \Delta_{30}]/f(\Delta_{12}, \Delta_{16}, \Delta_{30})$$

Conjecture (Rustom)

The \mathbb{C} -algebra $M(\Gamma_0(N))$ is generated in weight at most 6 with relations in weight at most 12.

– This was proved by Wagreich in 1980/81.

Conjecture (Rustom)

The $\mathbb{Z}[1/6N]$ -algebra $M(\Gamma_0(N), \mathbb{Z}[1/6N])$ is generated in weight at most 6 with relations in weight at most 12.

- $M_k(\Gamma_0(N), R)$ consists of forms with *q*-expansion in R[[q]].

Conjecture (Rustom)

The $\mathbb{Z}[1/6N]$ -algebra $M(\Gamma_0(N), \mathbb{Z}[1/6N])$ is generated in weight at most 6 with relations in weight at most 12.

Theorem (Voight, ZB)

Rustom's conjecture is true.

Theorem (Voight, ZB)

More generally, the \mathbb{C} -algebra $M(\Gamma, \mathbb{C})$ is generated in weight at most 6e with relations in weight at most 12e, where e is the max of the orders of the stabilizers of Γ .

Translation to Geometry (Kodaira–Spencer)

Modular curves

$$Y = [\mathcal{H}/\Gamma]$$

$$\Delta = cusps$$

$$X = Y \cup \Delta = [\overline{\mathcal{H}}/\Gamma]$$

Kodaira-Spencer

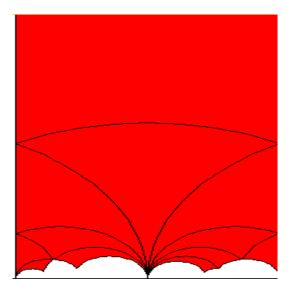
$$M_k(\Gamma) \cong H^0(X, \Omega^1(\Delta)^{\otimes k/2})$$
$$f(z) \mapsto f(z) \, dz^{\otimes k/2}$$

Log canonical ring

$$M(\Gamma) \cong R_{X,\Delta} := \bigoplus_k H^0(X, \Omega^1(\Delta)^{\otimes k})$$

David Zureick-Brown and John Voight

Example: $X_0(11)$ (fundamental domain)



Example: $X_0(11)$, $\Delta = P + Q$

Example (LMFDB)

$$\bigoplus_{k\in 2\mathbb{Z}_{>0}} M_k(\Gamma_0(11)) \cong \mathbb{C}[E_2, f_E, g_4]/(g_4^2 - F(E_2, f_E))$$

Remark (Via Kodaira Spencer)

$$\bigoplus_{\in 2\mathbb{Z}_{\geq 0}} M_k(\Gamma_0(11)) \cong \bigoplus_{k \in \mathbb{Z}_{\geq 0}} H^0(X_0(11), k(P+Q))$$

Remark (Riemann-Roch)

k

$$\dim H^0(X_0(11), k(P+Q)) = \max\{1, 2k\}$$

$$\dim {\rm im} \left(H^0(X_0(11),P+Q)^{\otimes^2} \to H^0(X_0(11),2(P+Q)) \right) = 3$$

David Zureick-Brown and John Voight

Definition

The **canonical map** $\phi_{\mathcal{K}} \colon \mathcal{C} \to \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) \colon \ldots \colon \omega_g(P)]$.

(An embedding iff C is not hyperelliptic.)

Facts

$$\mathcal{C}\cong\operatorname{\mathsf{Proj}}\mathcal{R}_{X,\Delta}\cong\operatorname{\mathsf{Proj}}igoplus_k\mathcal{H}^0(X,\Omega^1(\Delta)^{\otimes k})$$

Facts

The relations among $R_{X,1}$ are the defining equations of $\phi_{\mathcal{K}}(\mathcal{C})$.

Let C be non-hyperelliptic, non-trigonal, not a plane quintic.

Theorem (Enriques-Noether-Baggage-Petri)

The canonical ring R_C is generated in degree 1 with relations in degree 2.

Remark

- For C trigonal or a plane quintic R_C is generated in degree 1 with relations in degrees 2 and 3
- (unless g(C) = 3, which has a single relation in degree 4)
- For C hyperelliptic, there are generators in degrees 1,2, relations in degrees up to 4.

Let C be a curve and Δ a log divisor.

Theorem (Voight, ZB)

The log canonical ring R_C is generated in degree at most 3 with relations in degree at most 6.

Remark

Lots of exceptional cases if 0 < deg $\Delta \leq$ 2.

Remark (Things stabilize)

 ${\small \textcircled{0}} \quad {\small Generators in degree 1 with relations in degree 2,3 if $\Delta=3$}$

2 (Mumford.) Generators in degree 1 with relations in degree 2 if $\Delta \geq 4$

Let C be a curve and Δ a log divisor.

Theorem (Voight, ZB)

The log canonical ring R_C is generated in degree at most 3 with relations in degree at most 6.

Corollary

Rustom's conjecture is true if Γ acts without stabilizers.

Translation to Geometry (Kodaira–Spencer)

Modular curves

$$X = Y \cup \Delta = [\overline{\mathcal{H}}/\Gamma]$$

Kodaira-Spencer

$$M_k(\Gamma) \cong H^0(X, \Omega^1(\Delta)^{\otimes k/2})$$

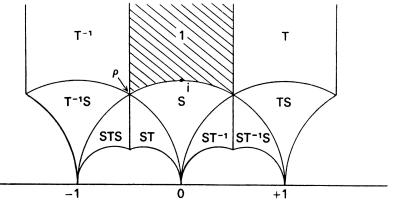
 $f(z) \mapsto f(z) dz^{\otimes k/2}$

Log canonical ring

$$M(\Gamma) \cong R_{X,\Delta} := \bigoplus_k H^0(X, \Omega^1(\Delta)^{\otimes k})$$

David Zureick-Brown and John Voight

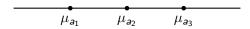
Fundamental Domain for X(1)



Fundamental Domain for X(1)

 $D = K + \Delta = -\infty$

d	dD	dim $H^0(X, \lfloor dD \rfloor)$	$\dim M_{2d}(SL_2(\mathbb{Z}))$
0	0	1	1
1	$-\infty$	0	0
2	-2∞	0	1
3	-3∞	0	1
4	-4∞	0	1
5	-5∞	0	1
6	-6∞	0	2



Remark

Divisors are now fractional.

2
$$D = D_0 + \frac{n_1}{a_1}P_1 + \frac{n_2}{a_2}P_2 + \frac{n_3}{a_3}P_3$$

Fact

$$K_{\mathscr{X}} = K_X + \sum \frac{e_P - 1}{e_P} P$$

Definition

The **floor** $\lfloor D \rfloor$ of a Weil divisor $D = \sum_i a_i P_i$ on \mathscr{X} is the divisor on X given by

$$\lfloor D \rfloor = \sum_{i} \left\lfloor \frac{a_{i}}{\# G_{P_{i}}} \right\rfloor \pi(P_{i}).$$

Fact

$$H^0(\mathscr{X},D)=H^0(X,\lfloor D\rfloor)$$

Example: X(1)

$$D = K + \Delta = \frac{1}{2}P + \frac{2}{3}Q - \infty$$

d	$\lfloor dD \rfloor$	$deg\lfloor dD \rfloor$	dim $H^0(X, \lfloor dD \rfloor)$	$M_{2d}(SL_2(\mathbb{Z}))$
0	0	0	1	1
1	$-\infty$	-1	0	0
2	$P+Q-2\infty$	0	1	E ₄
3	$P+2Q-3\infty$	0	1	E_6
4	$2P+2Q-4\infty$	0	1	E_4^2
5	$2P+3Q-5\infty$	0	1	$E_4 E_6$
6	$3P+4Q-6\infty$	1	2	E_{4}^{3}, E_{6}^{2}

Theorem (Voight,ZB)

Let (\mathscr{X}, Δ) be a tame log stacky curve with signature $(g; e_1, \ldots, e_r; \delta)$ over a field k, and let $e = \max(1, e_1, \ldots, e_r)$. Then the canonical ring

$${\sf R}(\mathscr{X},\Delta)=igoplus_{d=0}^\infty {\sf H}^0(\mathscr{X},\Omega(\Delta)^{\otimes d})$$

is generated as a k-algebra by elements of degree at most 3e with relations of degree at most 6e.

Remark

Moreover, if $2g - 2 + \delta \ge 0$, then $R(\mathscr{X}, \Delta)$ is generated in degree at most $\max(3, e)$ with relations in degree at most $2\max(3, e)$.

Remark

- We generalize to the relative and spin cases.
- **2** We give (relative) Gröbner bases, generic initial ideals.
- Section 2018 Exact formulations of theorems are amenable to computation.