Beyond Fermat's Last Theorem

David Zureick-Brown
Amherst College

Slides available at http://dmzb.github.io/
Colby College Colloquium
April 15, 2024

$$
a^{2}+b^{2}=c^{2}
$$

Basic Problem (Solving Diophantine Equations)

Let f_{1}, \ldots, f_{m} be polynomials with integer coefficients, e.g.,

$$
\begin{gathered}
x^{2}+y^{2}+1 \\
x^{3}-y^{2}-2 \\
2 y^{2}+17 x^{4}-1
\end{gathered}
$$

Basic problem: solve polynomial equations
Describe the set

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: \forall i, f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right\}
$$

i.e., the set of integer solutions to those polynomials

Fact
Solving Diophantine equations is difficult.

Basic Problem (Solving Diophantine Equations)

Let f_{1}, \ldots, f_{m} be polynomials with integer coefficients, e.g.,

$$
\begin{gathered}
x^{2}+y^{2}+1=0 \\
x^{3}-y^{2}-2=0 \\
2 y^{2}+17 x^{4}-1=0
\end{gathered}
$$

Basic problem: solve polynomial equations
Describe the set

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: \forall i, f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right\}
$$

i.e., the set of integer solutions to those polynomials

Fact

Solving Diophantine equations is difficult.

Hilbert's Tenth Problem

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:
input: integer polynomials f_{1}, \ldots, f_{m} in variables x_{1}, \ldots, x_{n};
output: YES / NO according to whether the set of solutions

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}: \forall i, f_{i}\left(a_{1}, \ldots, a_{n}\right)=0\right\}
$$

is non-empty.
This is known to be true for many other cases (e.g., $\left.\mathbb{C}, \mathbb{R}, \mathbb{F}_{q}, \mathbb{Q}_{p}, \mathbb{C}(t)\right)$.
This is still unknown in many other cases (e.g., \mathbb{Q}).

Fermat's Last Theorem - A Marvelous Proof

Theorem (Wiles; Taylor)
For primes $p \geq 3$ the only integer solutions to the equation

$$
x^{p}+y^{p}=z^{p}
$$

are integer multiples of the triples

$$
(0,0,0), \quad(\pm 1, \mp 1,0), \quad \pm(1,0,1), \quad \pm(0,1,1) .
$$

Fermat's Last Theorem - A Marvelous Proof

Theorem (Wiles; Taylor)
For primes $p \geq 3$ the only integer solutions to the equation

$$
x^{p}+y^{p}=z^{p}
$$

are integer multiples of the triples

$$
(0,0,0), \quad(\pm 1, \mp 1,0), \quad \pm(1,0,1), \quad \pm(0,1,1) .
$$

This took 300 years to prove!

Fermat's Last Theorem - A Marvelous Proof

Theorem (Wiles; Taylor)
For primes $p \geq 3$ the only integer solutions to the equation

$$
x^{p}+y^{p}=z^{p}
$$

are integer multiples of the triples

$$
(0,0,0), \quad(\pm 1, \mp 1,0), \quad \pm(1,0,1), \quad \pm(0,1,1)
$$

This took 300 years to prove!

Fermat's Last Theorem - A Marvelous Proof

Theorem (Wiles; Taylor)
For primes $p \geq 3$ the only integer solutions to the equation

$$
x^{p}+y^{p}=z^{p}
$$

are integer multiples of the triples

$$
(0,0,0), \quad(\pm 1, \mp 1,0), \quad \pm(1,0,1), \quad \pm(0,1,1) .
$$

This took 300 years to prove!

Fermat's Last Theorem - A Marvelous Proof

Theorem (Wiles; Taylor)
For primes $p \geq 3$ the only integer solutions to the equation

$$
x^{p}+y^{p}=z^{p}
$$

are integer multiples of the triples

$$
(0,0,0), \quad(\pm 1, \mp 1,0), \quad \pm(1,0,1), \quad \pm(0,1,1) .
$$

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

Fermat's Last Theorem - aftermath

$$
\begin{aligned}
& \text { Fermat's equation: } \\
& \qquad x^{n}+y^{n}=z^{n} \\
& \text { This equation has no } \\
& \text { solutions in integers } \\
& \text { for } n \geqslant 3 \text {. }
\end{aligned}
$$

Fermat's Last Theorem - aftermath

$$
\begin{aligned}
& \text { Fermat's equation: } \\
& \qquad x^{n}+y^{n}=z^{n} \\
& \text { This equation has no } \\
& \text { solutions in integers } \\
& \text { for } n \geqslant 3 \text {. }
\end{aligned}
$$

GAP

Fermat's Last Theorem - aftermath

$$
\begin{aligned}
& \text { Fermat's equation: } \\
& \qquad x^{n}+y^{n}=z^{\prime \prime} \\
& \text { This equation has no } \\
& \text { solutions in integers } \\
& \text { for } n \geqslant 3 \text {. }
\end{aligned}
$$

GAP

Books

The Epic Quest to Solve the World's Greatest Mathematical Problem SIMON SINGH $\begin{aligned} & \text { foreword by } \\ & \text { John Lynch }\end{aligned}$

IAN STEWART
 Author of Does God Play Dice?

Fermat trolling

Fermat trolling

Basic Problem: $f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Basic Problem: $f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Basic Problem: $f_{1}, \ldots, f_{m} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Implicit question

- Why do equations have (or fail to have) solutions?
- Why do some have many and some have none?
-What underlying mathematical structures control this?

Example: Pythagorean triples

$$
\begin{aligned}
& 3^{2}+4^{2}=5^{2} \\
& 5^{2}+12^{2}=13^{2} \\
& 7^{2}+24^{2}=25^{2}
\end{aligned}
$$

Lemma

The equation

$$
x^{2}+y^{2}=z^{2}
$$

has infinitely many non-zero coprime solutions.

Pythagorean triples

$$
\begin{aligned}
\text { Slope }=t & =\frac{y}{x+1} \\
x & =\frac{1-t^{2}}{1+t^{2}} \\
y & =\frac{2 t}{1+t^{2}}
\end{aligned}
$$

Pythagorean triples

Lemma

The solutions to

$$
a^{2}+b^{2}=c^{2}
$$

(with $c \neq 0$) are all multiples of the triples

$$
a=1-t^{2} \quad b=2 t \quad c=1+t^{2}
$$

The Mordell Conjecture

Example

The equation $y^{2}+x^{2}=1$ has infinitely many solutions.

The Mordell Conjecture

Example

The equation $y^{2}+x^{2}=1$ has infinitely many solutions.
Theorem (Faltings)
For $n \geq 5$, the equation

$$
y^{2}+x^{n}=1
$$

has only finitely many solutions.

The Mordell Conjecture

Example

The equation $y^{2}+x^{2}=1$ has infinitely many solutions.
Theorem (Faltings)
For $n \geq 5$, the equation

$$
y^{2}+x^{n}=1
$$

has only finitely many solutions.
Theorem (Faltings)
For $n \geq 5$, the equation

$$
y^{2}=f(x)
$$

has only finitely many solutions if $f(x)$ is squarefree, with degree >4.

Fermat Curves

Question

Why is Fermat's last theorem believable?
(1) $x^{n}+y^{n}-z^{n}=0$ looks like a surface (3 variables)
(2) $x^{n}+y^{n}-1=0$ looks like a curve (2 variables)

Mordell Conjecture

Example

$$
y^{2}=-\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-3\right)
$$

This is a cross section of a two holed torus.

The genus is the number of holes.
Conjecture (Mordell, 1922)
A curve of genus $g \geq 2$ has only finitely many rational solutions.

Fermat Curves

Question

Why is Fermat's last theorem believable?
(1) $x^{n}+y^{n}-z^{n}=0$ looks like a surface (3 variables)
(2) $x^{n}+y^{n}-1=0$ looks like a curve (2 variables)
(3) and has genus

$$
(n-1)(n-2) / 2
$$

which is ≥ 2 iff $n \geq 4$.

Fermat Curves

Question

What if $n=3$?
(1) $x^{3}+y^{3}-1=0$ is a curve of genus $(3-1)(3-2) / 2=1$.
(2) We were lucky; $A x^{3}+B y^{3}=C z^{3}$ can have infinitely many solutions.

Congruent number problem

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 6
$$

$$
3^{2}+4^{2}=5^{2}, \quad 3 \cdot 4=2 \cdot 6
$$

Congruent number problem

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution? How many digits does the smallest solution have?

$$
\begin{aligned}
& x=\frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
& y=\frac{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
& z=\frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{aligned}
$$

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution? How many digits does the smallest solution have?

$$
\begin{aligned}
& x=\frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
& y=\frac{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
& z=\frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{aligned}
$$

The denominator of z has 44 digits!

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

$$
\begin{aligned}
& x=\frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
& y=\frac{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
& z=\frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{aligned}
$$

The denominator of z has 44 digits!
How did anyone ever find this solution?

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

$$
\begin{aligned}
& x=\frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
& y=\frac{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
& z=\frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{aligned}
$$

The denominator of z has 44 digits!
How did anyone ever find this solution?
(Heegner Points)

Assume the Birch-Swinnerton-Dyer conjectures

If you assume $\$ 1,000,000$ worth of conjectures, then the equations

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

have infinitely many solutions. How large Is the smallest solution?
How many digits does the smallest solution have?

$$
\begin{aligned}
& x=\frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441} \\
& y=\frac{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576} \\
& z=\frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}
\end{aligned}
$$

The denominator of z has 44 digits!
How did anyone ever find this solution?
(Heegner Points)
"Next" soluton has 176 digits!

Back of the envelope calculation (as of 2011)

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

- Num, $\operatorname{den}(x, y, z) \leq 10 \sim 10^{6}$ many, 1 min on Emory's computers.

Back of the envelope calculation (as of 2011)

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

- Num, $\operatorname{den}(x, y, z) \leq 10 \sim 10^{6}$ many, 1 min on Emory's computers.
- Num, $\operatorname{den}(x, y, z) \leq 10^{44} \sim 10^{264}$ many, $\mathbf{1 0}^{\mathbf{2 5 8}}$ mins $=\mathbf{1 0}^{252}$ years.

Back of the envelope calculation (as of 2011)

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

- Num, $\operatorname{den}(x, y, z) \leq 10 \sim 10^{6}$ many, 1 min on Emory's computers.
- Num, den $(x, y, z) \leq 10^{44} \sim 10^{264}$ many, $\mathbf{1 0}^{\mathbf{2 5 8}}$ mins $=\mathbf{1 0}^{\mathbf{2 5 2}}$ years.
- 10^{9} many computers in the world - so $\mathbf{1 0}^{\mathbf{2 4 3}}$ years

Back of the envelope calculation (as of 2011)

$$
x^{2}+y^{2}=z^{2}, x y=2 \cdot 157
$$

- Num, $\operatorname{den}(x, y, z) \leq 10 \sim 10^{6}$ many, 1 min on Emory's computers.
- Num, $\operatorname{den}(x, y, z) \leq 10^{44} \sim 10^{264}$ many, $\mathbf{1 0}^{\mathbf{2 5 8}}$ mins $=\mathbf{1 0}^{\mathbf{2 5 2}}$ years.
- 10^{9} many computers in the world - so $\mathbf{1 0}^{\mathbf{2 4 3}}$ years
- Expected time until 'heat death' of universe $-\mathbf{1 0}^{\mathbf{1 0 0}}$ years.

Fermat Surfaces

Conjecture

The only solutions to the equation

$$
x^{n}+y^{n}=z^{n}+w^{n}, n \geq 5
$$

satisfy $x y z w=0$ or lie on the lines 'lines' $x=z, y=w$ (and permutations).

The Swinnerton-Dyer K3 surface

$$
x^{4}+2 y^{4}=1+4 z^{4}
$$

The Swinnerton-Dyer K3 surface

$$
x^{4}+2 y^{4}=1+4 z^{4}
$$

Two ‘obvious’ solutions $-(\pm 1: 0: 0)$.

The Swinnerton-Dyer K3 surface

$$
x^{4}+2 y^{4}=1+4 z^{4}
$$

- Two 'obvious' solutions - $(\pm 1: 0: 0)$.
- The next smallest solutions are $\left(\pm \frac{1484801}{1169407}, \pm \frac{1203120}{1169407}, \pm \frac{1157520}{1169407}\right)$.

Problem

Find another solution. (Probably impossible.)

Back of envelope calcluation

(1) 10^{16} years to find via brute force.
(2) Age of the universe $\mathbf{- 1 3 . 7 5} \pm . \mathbf{1 1}$ billion years (roughly $\mathbf{1 0}^{\mathbf{1 0}}$).

Sums of cubes

$$
\begin{aligned}
& 1=1^{3}+0^{3}+0^{3} \\
& 2=1^{3}+1^{3}+0^{3} \\
& 3=1^{3}+1^{3}+1^{3} \\
& 3=4^{3}+4^{3}+(-5)^{3} \\
& 4 \neq x^{3}+y^{3}+z^{3} \\
& 5 \neq x^{3}+y^{3}+z^{3} \\
& 6=1^{3}+1^{3}+2^{3}
\end{aligned}
$$

Conjecture (Heath-Brown)
The equation

$$
x^{3}+y^{3}+z^{3}=n
$$

has an integer solution if and only if n is not 4 or $5 \bmod 9$.

Solved by Booker-Sutherland

$$
32 \neq x^{3}+y^{3}+z^{3}
$$

$$
33=
$$

Solved by Booker-Sutherland

$$
\begin{aligned}
& 32 \neq x^{3}+y^{3}+z^{3} \\
& 33=8866128975287528^{3}+(-8778405442862239)^{3}+(-2736111468807040)^{3}
\end{aligned}
$$

Solved by Booker-Sutherland

$$
\begin{aligned}
& 32 \neq x^{3}+y^{3}+z^{3} \\
& 33=8866128975287528^{3}+(-8778405442862239)^{3}+(-2736111468807040)^{3} \\
& 42=(-80538738812075974)^{3}+80435758145817515^{3}+12602123297335631^{3}
\end{aligned}
$$

Solved by Booker-Sutherland

$$
\begin{aligned}
& 32 \neq x^{3}+y^{3}+z^{3} \\
& 33=8866128975287528^{3}+(-8778405442862239)^{3}+(-2736111468807040)^{3} \\
& 42=(-80538738812075974)^{3}+80435758145817515^{3}+12602123297335631^{3}
\end{aligned}
$$

Solved by Booker-Sutherland

$$
\begin{aligned}
& 32 \neq x^{3}+y^{3}+z^{3} \\
& 33=8866128975287528^{3}+(-8778405442862239)^{3}+(-2736111468807040)^{3} \\
& 42=(-80538738812075974)^{3}+80435758145817515^{3}+12602123297335631^{3} \\
& 3=569936821221962380720^{3}+(-569936821113563493509)^{3}+(-472715493453327032)^{3}
\end{aligned}
$$

Solved by Booker-Sutherland

$$
\begin{aligned}
32 & \neq x^{3}+y^{3}+z^{3} \\
33 & =8866128975287528^{3}+(-8778405442862239)^{3}+(-2736111468807040)^{3} \\
42 & =(-80538738812075974)^{3}+80435758145817515^{3}+12602123297335631^{3} \\
3 & =569936821221962380720^{3}+(-569936821113563493509)^{3}+(-472715493453327032)^{3} \\
114 & =x^{3}+y^{3}+z^{3} ?
\end{aligned}
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1)
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1),
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1)
$$

$$
(\pm 71,-17,2)
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
\begin{gathered}
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1) \\
(\pm 71,-17,2),(\pm 2213459,1414,65), \quad(\pm 15312283,9262,113) \\
(\pm 21063928,-76271,17)
\end{gathered}
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
\begin{gathered}
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1), \\
(\pm 71,-17,2),(\pm 2213459,1414,65), \quad(\pm 15312283,9262,113), \\
(\pm 21063928,-76271,17) .
\end{gathered}
$$

"Generalized" Fermat equations

Theorem (Poonen, Schaefer, Stoll)
The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
\begin{gathered}
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1), \\
(\pm 71,-17,2),(\pm 2213459,1414,65), \quad(\pm 15312283,9262,113), \\
(\pm 21063928,-76271,17) .
\end{gathered}
$$

Generalized Fermat Equations

Problem

What are the solutions to the equation $x^{a}+y^{b}=z^{c}$?

Generalized Fermat Equations

Problem

What are the solutions to the equation $x^{a}+y^{b}=z^{c}$?
Theorem (Darmon and Granville)
Fix $a, b, c \geq 2$. Then the equation $x^{a}+y^{b}=z^{c}$ has only finitely many coprime integer solutions iff $\chi=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1 \leq 0$.

Known Solutions to $x^{a}+y^{b}=z^{c}$ with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1$

$$
\begin{gathered}
1^{p}+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4} \\
7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2} \\
3^{5}+11^{4}=122^{2} \\
17^{7}+76271^{3}=21063928^{2} \\
1414^{3}+2213459^{2}=65^{7} \\
9262^{3}+153122832^{2}=113^{7} \\
43^{8}+96222^{3}=30042907^{2} \\
33^{8}+1549034^{2}=15613^{3}
\end{gathered}
$$

Known Solutions to $x^{a}+y^{b}=z^{c}$ with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1$

$$
\begin{gathered}
1^{p}+2^{3}=3^{2}, \quad 2^{5}+7^{2}=3^{4} \\
7^{3}+13^{2}=2^{9}, \quad 2^{7}+17^{3}=71^{2} \\
3^{5}+11^{4}=122^{2} \\
17^{7}+76271^{3}=21063928^{2} \\
1414^{3}+2213459^{2}=65^{7} \\
9262^{3}+153122832^{2}=113^{7} \\
43^{8}+96222^{3}=30042907^{2} \\
33^{8}+1549034^{2}=15613^{3}
\end{gathered}
$$

Problem (Beal's conjecture)

These are all solutions with $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0$.

Generalized Fermat Equations - Known Solutions

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0$.

Generalized Fermat Equations - Known Solutions

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0$.
$\$ 1,000,000$ prize for proof of conjecture...

Generalized Fermat Equations - Known Solutions

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0$.
$\$ 1,000,000$ prize for proof of conjecture...
...or even for a counterexample.

Generalized Fermat Equations - Known Solutions

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-1<0$.
$\$ 1,000,000$ prize for proof of conjecture...
...or even for a counterexample.

Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
\begin{gathered}
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1), \\
(\pm 71,-17,2),(\pm 2213459,1414,65), \quad(\pm 15312283,9262,113), \\
(\pm 21063928,-76271,17) .
\end{gathered}
$$

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{7}-1=-\frac{1}{42}<0
$$

Examples of Generalized Fermat Equations

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^{2}+y^{3}=z^{7}$ are the 16 triples

$$
\begin{gathered}
(\pm 1,-1,0), \quad(\pm 1,0,1), \quad \pm(0,1,1), \quad(\pm 3,-2,1), \\
(\pm 71,-17,2),(\pm 2213459,1414,65), \quad(\pm 15312283,9262,113), \\
(\pm 21063928,-76271,17) .
\end{gathered}
$$

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{7}-1=-\frac{1}{42}<0
$$

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{6}-1=0
$$

Examples of Generalized Fermat Equations

Theorem (Darmon, Merel)
Any pairwise coprime solution to the equation

$$
x^{n}+y^{n}=z^{2}, n>4
$$

satisfies $x y z=0$.

$$
\frac{1}{n}+\frac{1}{n}+\frac{1}{2}-1=\frac{2}{n}-\frac{1}{2}<\frac{2}{4}-\frac{1}{2}=0
$$

Other applications of the modular method

 Ideas behind the proof of FLT permeate the study of diophantine problems.
Other applications of the modular method

 Ideas behind the proof of FLT permeate the study of diophantine problems.Theorem (Bugeaud, Mignotte, Siksek; 2006)
The only Fibonacci numbers that are perfect powers are

$$
F_{1}=F_{2}=1, F_{6}=8, F_{12}=144
$$

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Other applications of the modular method

 Ideas behind the proof of FLT permeate the study of diophantine problems.Theorem (Bugeaud, Mignotte, Siksek; 2006)
The only Fibonacci numbers that are perfect powers are

$$
F_{1}=F_{2}=1, F_{6}=8, F_{12}=144 .
$$

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Theorem (Silliman-Vogt; 2013 REU)
0 and 1 are the only perfect powers in the Lucas sequence

$$
L_{1}=0, L_{2}=1, \quad L_{n}=3 L_{n-1}-2 L_{n-2} .
$$

$$
0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191, \ldots, 2^{n}-1, \ldots
$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

$$
x^{2}+y^{3}=z^{5}
$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

$$
x^{2}+y^{3}=z^{5}
$$

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-1=\frac{1}{30}>0
$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

$$
x^{2}+y^{3}=z^{5}
$$

has infinitely many coprime solutions

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-1=\frac{1}{30}>0
$$

Examples of Generalized Fermat Equations

Theorem (Klein, Zagier, Beukers, Edwards, others)
The equation

$$
x^{2}+y^{3}=z^{5}
$$

has infinitely many coprime solutions

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{3}+\frac{1}{5}-1=\frac{1}{30}>0 \\
& (T / 2)^{2}+H^{3}+\left(f / 12^{3}\right)^{5}
\end{aligned}
$$

(1) $f=s t\left(t^{10}-11 t^{5} s^{5}-s^{10}\right)$,
(2) $H=$ Hessian of f,
(3) $T=$ a degree 3 covariant of the dodecahedron.
(a, b, c) such that $\chi<0$ and the solutions to $x^{a}+y^{b}=z^{c}$ have been determined.
$\{n, n, n\} \quad$ Wiles,Taylor-Wiles, building on work of many others
$\{2, n, n\} \quad$ Darmon-Merel, others for small n
$\{3, n, n\} \quad$ Darmon-Merel, others for small n
$\{5,2 n, 2 n\} \quad$ Bennett
$(2,4, n) \quad$ Ellenberg, Bruin, Ghioca $n \geq 4$
$(2, n, 4) \quad$ Bennett-Skinner; $n \geq 4$
$\{2,3, n\} \quad$ Poonen-Shaefer-Stoll, Bruin. $6 \leq n \leq 9$
$\{2,2 \ell, 3\} \quad$ Chen, Dahmen, Siksek; primes $7<\ell<1000$ with $\ell \neq 31$
$\{3,3, n\} \quad$ Bruin; $n=4,5$
$\{3,3, \ell\} \quad$ Kraus; primes $17 \leq \ell \leq 10000$
$(2,2 n, 5) \quad$ Chen $n \geq 3^{*}$
$(4,2 n, 3) \quad$ Bennett-Chen $n \geq 3$
$(6,2 n, 2) \quad$ Bennett-Chen $n \geq 3$
$(2,6, n) \quad$ Bennett-Chen $n \geq 3$
(a, b, c) such that $\chi<0$ and the solutions to $x^{a}+y^{b}=z^{c}$ have been determined.
$\begin{array}{ll}\{n, n, n\} & \text { Wiles,Taylor-Wiles, building on work of many others } \\ \{2, n, n\} & \text { Darmon-Merel, others for small } n \\ \{3, n, n\} & \text { Darmon-Merel, others for small } n \\ \{5,2 n, 2 n\} & \text { Bennett } \\ (2,4, n) & \text { Ellenberg, Bruin, Ghioca } n \geq 4 \\ (2, n, 4) & \text { Bennett-Skinner; } n \geq 4 \\ \{2,3, n\} & \text { Poonen-Shaefer-Stoll, Bruin. } 6 \leq n \leq 9 \\ \{2,2 \ell, 3\} & \text { Chen, Dahmen, Siksek; primes } 7<\ell<1000 \text { with } \ell \neq 31 \\ \{3,3, n\} & \text { Bruin; } n=4,5 \\ \{3,3, \ell\} & \text { Kraus; primes } 17 \leq \ell \leq 10000 \\ (2,2 n, 5) & \text { Chen } n \geq 3^{*} \\ (4,2 n, 3) & \text { Bennett-Chen } n \geq 3 \\ (6,2 n, 2) & \text { Bennett-Chen } n \geq 3 \\ (2,6, n) & \text { Bennett-Chen } n \geq 3 \\ (2,3,10) & \text { ZB }\end{array}$

