Beyond Fermat's Last Theorem

David Zureick-Brown Amherst College

Slides available at http://dmzb.github.io/

Colby College Colloquium April 15, 2024

$$a^2 + b^2 = c^2$$

Basic Problem (Solving Diophantine Equations)

Let f_1, \ldots, f_m be polynomials with integer coefficients, e.g.,

$$x^{2} + y^{2} + 1$$
$$x^{3} - y^{2} - 2$$
$$2y^{2} + 17x^{4} - 1$$

Basic problem: solve polynomial equations

Describe the set

$$V(f_1,\ldots,f_m)=\big\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\big\},$$

i.e., the set of integer solutions to those polynomials

Fact

Solving Diophantine equations is difficult.

Basic Problem (Solving Diophantine Equations)

Let f_1, \ldots, f_m be polynomials with integer coefficients, e.g.,

$$x^{2} + y^{2} + 1 = 0$$

$$x^{3} - y^{2} - 2 = 0$$

$$2y^{2} + 17x^{4} - 1 = 0$$

Basic problem: solve polynomial equations

Describe the set

$$V(f_1,\ldots,f_m)=\big\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\big\},$$

i.e., the set of integer solutions to those polynomials

Fact

Solving Diophantine equations is difficult.

Hilbert's Tenth Problem

Theorem (Davis-Putnam-Robinson 1961, Matijasevič 1970)

There does not exist an algorithm solving the following problem:

input: integer polynomials f_1, \ldots, f_m in variables x_1, \ldots, x_n ;

 $\textit{output} \colon \mathrm{YES} \, / \, \mathrm{NO}$ according to whether the set of solutions

$$\{(a_1,\ldots,a_n)\in\mathbb{Z}^n:\forall i,f_i(a_1,\ldots,a_n)=0\}$$

is non-empty.

This is *known* to be true for many other cases (e.g., $\mathbb{C}, \mathbb{R}, \mathbb{F}_q, \mathbb{Q}_p, \mathbb{C}(t)$).

This is *still unknown* in many other cases (e.g., \mathbb{Q}).

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), \pm (0,1,1).$$

Theorem (Wiles; Taylor)

For primes $p \geq 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), \pm (0,1,1).$$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

$$(0,0,0),\quad (\pm 1,\mp 1,0),\quad \pm (1,0,1),\quad \pm (0,1,1).$$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), \pm (0,1,1).$$

This took 300 years to prove!

Theorem (Wiles; Taylor)

For primes $p \ge 3$ the only integer solutions to the equation

$$x^p + y^p = z^p$$

are integer multiples of the triples

$$(0,0,0), (\pm 1, \mp 1,0), \pm (1,0,1), \pm (0,1,1).$$

This took 300 years to prove!

https://mathshistory.st-andrews.ac.uk/Miller/stamps/

Fermat's Last Theorem - aftermath

Fermat's Last Theorem - aftermath

Fermat's Last Theorem - aftermath

Books

Fermat trolling

Fermat trolling

Basic Problem: $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$

Qualitative:

- Does there exist a solution?
- ▶ Do there exist infinitely many solutions?
- ► Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Basic Problem: $f_1, \ldots, f_m \in \mathbb{Z}[x_1, \ldots, x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- ➤ Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Basic Problem: $f_1, ..., f_m \in \mathbb{Z}[x_1, ..., x_n]$

Qualitative:

- Does there exist a solution?
- Do there exist infinitely many solutions?
- ▶ Does the set of solutions have some extra structure (e.g., geometric structure, group structure).

Quantitative

- How many solutions are there?
- How large is the smallest solution?
- How can we explicitly find all solutions? (With proof?)

Implicit question

- Why do equations have (or fail to have) solutions?
- Why do some have many and some have none?
- What underlying mathematical structures control this?

Example: Pythagorean triples

$$3^{2}+4^{2} = 5^{2}$$
$$5^{2}+12^{2}=13^{2}$$
$$7^{2}+24^{2}=25^{2}$$

Lemma

The equation

$$x^2 + y^2 = z^2$$

has infinitely many non-zero coprime solutions.

Pythagorean triples

Slope =
$$t = \frac{y}{x+1}$$

 $x = \frac{1-t^2}{1+t^2}$
 $y = \frac{2t}{1+t^2}$

Pythagorean triples

Lemma

The solutions to

$$a^2 + b^2 = c^2$$

(with $c \neq 0$) are all multiples of the triples

$$\boxed{a = 1 - t^2} \boxed{b = 2t} \boxed{c = 1 + t^2}$$

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

The Mordell Conjecture

Example

The equation $y^2 + x^2 = 1$ has infinitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 + x^n = 1$$

has only finitely many solutions.

Theorem (Faltings)

For $n \ge 5$, the equation

$$y^2 = f(x)$$

has only finitely many solutions if f(x) is squarefree, with degree > 4.

Fermat Curves

Question

Why is Fermat's last theorem believable?

- ① $x^n + y^n z^n = 0$ looks like a surface (3 variables)
- 2 $x^n + y^n 1 = 0$ looks like a curve (2 variables)

Mordell Conjecture

Example

$$y^2 = -(x^2 - 1)(x^2 - 2)(x^2 - 3)$$

This is a cross section of a two holed torus.

The **genus** is the number of holes.

Conjecture (Mordell, 1922)

A curve of genus $g \ge 2$ has only finitely many rational solutions.

Fermat Curves

Question

Why is Fermat's last theorem believable?

- ① $x^n + y^n z^n = 0$ looks like a surface (3 variables)
- 2 $x^n + y^n 1 = 0$ looks like a curve (2 variables)
- and has genus

$$(n-1)(n-2)/2$$

which is > 2 iff n > 4.

Fermat Curves

Question

What if n = 3?

- ① $x^3 + y^3 1 = 0$ is a curve of genus (3 1)(3 2)/2 = 1.
- ② We were lucky; $Ax^3 + By^3 = Cz^3$ can have infinitely many solutions.

Congruent number problem

$$x^2 + y^2 = z^2$$
, $xy = 2 \cdot 6$

$$3^2 + 4^2 = 5^2$$
, $3 \cdot 4 = 2 \cdot 6$

Congruent number problem

$$x^2 + y^2 = z^2$$
, $xy = 2 \cdot 157$

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

The denominator of z has **44 digits**!

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

The denominator of z has **44 digits**! How did anyone ever find this solution?

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

The denominator of z has **44 digits**! How did anyone ever find this solution? (Heegner Points)

If you assume \$1,000,000 worth of conjectures, then the equations

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

have **infinitely many** solutions. **How large** Is the smallest solution? How many **digits** does the smallest solution have?

$$x = \frac{157841 \cdot 4947203 \cdot 52677109576}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441}$$

$$y = \frac{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 157 \cdot 17401 \cdot 46997 \cdot 356441}{157841 \cdot 4947203 \cdot 52677109576}$$

$$z = \frac{20085078913 \cdot 1185369214457 \cdot 942545825502442041907480}{2 \cdot 3^2 \cdot 5 \cdot 13 \cdot 17 \cdot 37 \cdot 101 \cdot 17401 \cdot 46997 \cdot 356441 \cdot 157841 \cdot 4947203 \cdot 52677109576}$$

The denominator of z has **44 digits!**How did anyone ever find this solution?
(Heegner Points)
"Next" soluton has **176 digits!**

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

• Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.

$$x^2 + y^2 = z^2, xy = 2 \cdot 157$$

- Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.
- Num, $den(x, y, z) \le 10^{44} \sim 10^{264}$ many, 10^{258} mins $= 10^{252}$ years.

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

- Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.
- Num, $den(x, y, z) \le 10^{44} \sim 10^{264}$ many, 10^{258} mins = 10^{252} years.
- 10⁹ many computers in the world so 10²⁴³ years

$$x^2 + y^2 = z^2, \, xy = 2 \cdot 157$$

- Num, den $(x, y, z) \le 10 \sim 10^6$ many, **1 min** on Emory's computers.
- Num, $den(x, y, z) \le 10^{44} \sim 10^{264}$ many, 10^{258} mins = 10^{252} years.
- 10⁹ many computers in the world so 10²⁴³ years
- Expected time until 'heat death' of universe 10^{100} years.

Fermat Surfaces

Conjecture

The only solutions to the equation

$$x^n + y^n = z^n + w^n, n \ge 5$$

satisfy xyzw = 0 or lie on the lines 'lines' x = z, y = w (and permutations).

The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$

The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$

Two 'obvious' solutions $-(\pm 1:0:0)$.

The Swinnerton-Dyer K3 surface

$$x^4 + 2y^4 = 1 + 4z^4$$

- Two 'obvious' solutions $(\pm 1:0:0)$.
- The next smallest solutions are $\left(\pm\frac{1484801}{1169407},\pm\frac{1203120}{1169407},\pm\frac{1157520}{1169407}\right)$.

Problem

Find another solution. (Probably impossible.)

Back of envelope calcluation

- 10¹⁶ years to find via brute force.
- 2 Age of the universe $-13.75 \pm .11$ billion years (roughly 10^{10}).

Sums of cubes

$$1 = 1^{3} + 0^{3} + 0^{3}$$

$$2 = 1^{3} + 1^{3} + 0^{3}$$

$$3 = 1^{3} + 1^{3} + 1^{3}$$

$$3 = 4^{3} + 4^{3} + (-5)^{3}$$

$$4 \neq x^{3} + y^{3} + z^{3}$$

$$5 \neq x^{3} + y^{3} + z^{3}$$

$$6 = 1^{3} + 1^{3} + 2^{3}$$

Conjecture (Heath-Brown)

The equation

$$x^3 + v^3 + z^3 = n$$

has an integer solution if and only if n is not 4 or 5 mod 9.

$$32 \neq x^3 + y^3 + z^3$$

$$33 =$$

$$32 \neq x^3 + y^3 + z^3$$

$$33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$$

$$32 \neq x^3 + y^3 + z^3$$

$$33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$$

$$42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$$

$$32 \neq x^3 + y^3 + z^3$$

 $33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$

 $42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$

$$32 \neq x^3 + y^3 + z^3$$

$$33 = 8866128975287528^3 + (-8778405442862239)^3 + (-2736111468807040)^3$$

$$42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$$

$$3 = 569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-472715493457032)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-47271549345702)^2 + (-4727154934702)^2 + (-472715494702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-47271549702)^2 + (-4727154702)^2 + (-472$$

$$32 \neq x^3 + y^3 + z^3$$

$$33 = 8866128975287528^{3} + (-8778405442862239)^{3} + (-2736111468807040)^{3}$$

$$42 = (-80538738812075974)^3 + 80435758145817515^3 + 12602123297335631^3$$

$$3 = 569936821221962380720^3 + (-569936821113563493509)^3 + (-472715493453327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-47271549345327032)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715493452702)^3 + (-472715494702)^3 + (-472715494702)^3 + (-472715494702)^3 + (-47271549702)^3 + (-4727154702)^3 + (-4727154702)^3 + (-4727154702)^3 + (-4727154702)^3 + (-4727154702)^3 + (-472$$

$$114 = x^3 + y^3 + z^3?$$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1),$$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1),$$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1), (\pm 71, -17, 2),$$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1),$$

 $(\pm 71, -17, 2), (\pm 2213459, 1414, 65), (\pm 15312283, 9262, 113),$
 $(\pm 21063928, -76271, 17).$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1),$$

 $(\pm 71, -17, 2), (\pm 2213459, 1414, 65), (\pm 15312283, 9262, 113),$
 $(\pm 21063928, -76271, 17).$

Theorem (Poonen, Schaefer, Stoll)

$$(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1), (\pm 3, -2, 1),$$

 $(\pm 71, -17, 2), (\pm 2213459, 1414, 65), (\pm 15312283, 9262, 113),$
 $(\pm 21063928, -76271, 17).$

Problem

What are the solutions to the equation $x^a + y^b = z^c$?

Problem

What are the solutions to the equation $x^a + y^b = z^c$?

Theorem (Darmon and Granville)

Fix $a, b, c \ge 2$. Then the equation $x^a + y^b = z^c$ has only finitely many coprime integer solutions iff $\chi = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 \le 0$.

$$\mu_a$$
 μ_b μ_c

Known Solutions to $x^a + y^b = z^c$ with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$

$$1^{p} + 2^{3} = 3^{2}, 2^{5} + 7^{2} = 3^{4}$$

$$7^{3} + 13^{2} = 2^{9}, 2^{7} + 17^{3} = 71^{2}$$

$$3^{5} + 11^{4} = 122^{2}$$

$$17^{7} + 76271^{3} = 21063928^{2}$$

$$1414^{3} + 2213459^{2} = 65^{7}$$

$$9262^{3} + 153122832^{2} = 113^{7}$$

$$43^{8} + 96222^{3} = 30042907^{2}$$

$$33^{8} + 1549034^{2} = 15613^{3}$$

Known Solutions to $x^a + y^b = z^c$ with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1$

$$1^{p} + 2^{3} = 3^{2}, 2^{5} + 7^{2} = 3^{4}$$

$$7^{3} + 13^{2} = 2^{9}, 2^{7} + 17^{3} = 71^{2}$$

$$3^{5} + 11^{4} = 122^{2}$$

$$17^{7} + 76271^{3} = 21063928^{2}$$

$$1414^{3} + 2213459^{2} = 65^{7}$$

$$9262^{3} + 153122832^{2} = 113^{7}$$

$$43^{8} + 96222^{3} = 30042907^{2}$$

$$33^{8} + 1549034^{2} = 15613^{3}$$

Problem (Beal's conjecture)

These are all solutions with $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

\$1,000,000 prize for proof of conjecture...

Conjecture (Beal, Granville, Tijdeman–Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

\$1,000,000 prize for proof of conjecture...
...or even for a counterexample.

Conjecture (Beal, Granville, Tijdeman-Zagier)

This is a complete list of coprime non-zero solutions such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - 1 < 0$.

\$1,000,000 prize for proof of conjecture...
...or even for a counterexample.

Theorem (Poonen, Schaefer, Stoll)

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0$$

Theorem (Poonen, Schaefer, Stoll)

The coprime integer solutions to $x^2 + y^3 = z^7$ are the 16 triples

$$\begin{array}{cccc} (\pm 1,-1,0), & (\pm 1,0,1), & \pm (0,1,1), & (\pm 3,-2,1), \\ (\pm 71,-17,2), & (\pm 2213459,1414,65), & (\pm 15312283,9262,113), \\ & & (\pm 21063928,-76271,17) \,. \end{array}$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} - 1 = 0$$

 $\frac{1}{2} + \frac{1}{3} + \frac{1}{7} - 1 = -\frac{1}{42} < 0$

Theorem (Darmon, Merel)

Any pairwise coprime solution to the equation

$$x^n + y^n = z^2, n > 4$$

satisfies xyz = 0.

$$\frac{1}{n} + \frac{1}{n} + \frac{1}{2} - 1 = \frac{2}{n} - \frac{1}{2} < \frac{2}{4} - \frac{1}{2} = 0$$

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)

The only Fibonacci numbers that are perfect powers are

$$F_1 = F_2 = 1, F_6 = 8, F_{12} = 144.$$

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$

Other applications of the modular method

Ideas behind the proof of FLT permeate the study of diophantine problems.

Theorem (Bugeaud, Mignotte, Siksek; 2006)

The only Fibonacci numbers that are perfect powers are

$$F_1 = F_2 = 1, F_6 = 8, F_{12} = 144.$$

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

Theorem (Silliman-Vogt; 2013 REU)

0 and 1 are the only perfect powers in the Lucas sequence

$$L_1 = 0, L_2 = 1, \quad L_n = 3L_{n-1} - 2L_{n-2}.$$

 $0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, \dots, 2^n - 1, \dots$

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

$$x^2 + y^3 = z^5$$

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

$$x^2 + y^3 = z^5$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

$$x^2 + y^3 = z^5$$

has infinitely many coprime solutions

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

Theorem (Klein, Zagier, Beukers, Edwards, others)

The equation

$$x^2 + y^3 = z^5$$

has infinitely many coprime solutions

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} - 1 = \frac{1}{30} > 0$$

$$(T/2)^2 + H^3 + (f/12^3)^5$$

- H = Hessian of f,
- T = a degree 3 covariant of the dodecahedron.

(a,b,c) such that $\chi<0$ and the solutions to $x^a+y^b=z^c$ have been determined.

```
\{n, n, n\}
             Wiles, Taylor-Wiles, building on work of many others
             Darmon–Merel, others for small n
\{2, n, n\}
\{3, n, n\}
             Darmon–Merel, others for small n
\{5, 2n, 2n\}
             Bennett
(2,4,n)
             Ellenberg, Bruin, Ghioca n > 4
(2, n, 4)
             Bennett–Skinner; n > 4
\{2,3,n\}
             Poonen–Shaefer–Stoll, Bruin. 6 < n < 9
\{2, 2\ell, 3\}
             Chen, Dahmen, Siksek; primes 7 < \ell < 1000 with \ell \neq 31
\{3,3,n\}
             Bruin; n=4,5
\{3, 3, \ell\}
             Kraus; primes 17 \le \ell \le 10000
(2, 2n, 5)
             Chen n > 3^*
(4, 2n, 3)
             Bennett–Chen n > 3
(6, 2n, 2)
             Bennett–Chen n > 3
(2,6,n)
             Bennett–Chen n > 3
```

(a,b,c) such that $\chi<0$ and the solutions to $x^a+y^b=z^c$ have been determined.

```
\{n, n, n\}
             Wiles, Taylor-Wiles, building on work of many others
             Darmon–Merel, others for small n
\{2, n, n\}
\{3, n, n\}
             Darmon–Merel, others for small n
\{5, 2n, 2n\}
             Bennett
(2,4,n)
             Ellenberg, Bruin, Ghioca n > 4
(2, n, 4)
             Bennett–Skinner; n > 4
\{2,3,n\}
             Poonen–Shaefer–Stoll, Bruin. 6 < n < 9
\{2, 2\ell, 3\}
             Chen, Dahmen, Siksek; primes 7 < \ell < 1000 with \ell \neq 31
\{3,3,n\}
             Bruin; n=4,5
\{3, 3, \ell\}
             Kraus; primes 17 \le \ell \le 10000
(2, 2n, 5)
             Chen n > 3^*
             Bennett–Chen n \ge 3
(4, 2n, 3)
(6, 2n, 2)
             Bennett–Chen n > 3
             Bennett–Chen n > 3
(2,6,n)
(2, 3, 10)
             ZB
```