Math 220-01: Mathematical Reasoning and Proof Instructor: David Zureick-Brown ("DZB")

"Notes"
Last updated: February 5, 2024

These are very rough notes for the course, which mostly overlap with the class content.

Contents

1 Introduction to course. Mathematical reasoning. Logic 2
2 "Direct" proofs, proof by "cases" and divisibility problems 4
3 Proof by contradiction 5
4 Induction 57
5 Set theory. Basic operations. Proofs with sets 107
6 More sets. DeMorgans laws. Cartesian Products. Power sets 118
7 Introduction to functions; images and surjectivity 126
8 Inverse Image (or Preimage) 141
9 Injectivity 152
10 Composition of functions 165
11 Inverse functions 178
12 Relations 191

MATH 220 HANDOUT 1 - LOGIC

A statement is a sentence for which 'true or false' is meaningful.

1. Which of these are statements?
(1) Today it is raining.
(2) What is your name?
(3) Every student in this class is a math major.
(4) $2+2=5$.
(5) $x+1>0$.
(6) $x^{2}+1>0$.
(7) If it is raining, then I will wear my raincoat.
(8) Give me that.
(9) This sentence is false.
(10) If x is a real number, then $x^{2}>0$.
2. Which of these are true?
(1) (T or F) Every student in this class is a math major and a human being.
(2) (T or F) Every student in this class is a math major or a human being.
(3) (T or F) $2+2=5$ or $1>0$.
(4) (T or F) If x is a real number, then $x^{2} \geq 0$.
(5) (T or F) If x is a complex number, then $x^{2} \geq 0$.
3. Write the negations of the following.
(1) $2+2=5$
(2) $1>0$.
(3) $2+2=5$ or $1>0$.
(4) Every student in this class is a math major.
(5) Every student in this class is a math major or a human being.
(6) If x is a real number, then $x^{2}>0$.
4. Prove the following using truth tables.
(1) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$,
(2) $(P \vee Q) \vee R=P \vee(Q \vee R)$. (We thus write $P \vee Q \vee R$ for both.)
(3) $\neg(P \vee Q)=\neg P \wedge \neg Q$,
(4) $\neg(P \wedge Q)=($ make a guess similar to problem 3$)$,
(5) $\neg(\neg P)=P$.
5. In exercise 6, you may use the following variants of exercise 4 .
(1) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$,
(2) $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)$. (We thus write $P \wedge Q \wedge R$ for both.)
(3) $P \vee Q=Q \vee P$.
(4) $P \wedge Q=Q \wedge P$.
6. Prove or disprove the following without using truth tables.
(1) $\neg(P \wedge \neg Q)=\neg P \vee Q$.
(2) $P \vee((Q \wedge R) \wedge S)=(P \wedge Q) \vee(P \wedge R) \vee(P \wedge S)$.
(3) $P \vee(Q \wedge R) \wedge S)=(P \vee Q) \wedge(P \vee R) \wedge(P \vee S)$.
7. Write the negations of the following implications.
(1) If n is even, then n^{2} is even.
(2) If $1=0$, then $2+2=5$.
(3) If there is free coffee, then DZB will drink it
(4) If $1=0$ and $2+2=5$, then the sky is blue and kittens are popular on youtube
(5) If x and y are real numbers such that $x y=0$, then $x=0$ or $y=0$.
8. Which of these are true?
(1) (T or F) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) (T or F) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) (T or F) For all $x \in \mathbf{R}$, if $x \neq 0$, then there exists a $y \in \mathbf{R}$ such that $x y=1$.
(4) (T or F) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
9. Write the negations of the following.
(1) For all $x \in \mathbf{Z}, x$ is divisible by 2 .
(2) There exists an $x \in \mathbf{Z}$ such that x is divisible by 2 .
(3) $\neg(\forall x, P(x))$,
(4) $\neg(\exists x$ s.t. $Q(x))$
(5) $\forall x,(P(x) \wedge Q(x))$.
(6) If $\exists x \in \mathbf{R}$ such that $2 x=1$, then for all $y, y^{2}<0$.
(7) For all $x \in \mathbf{R}$, there exists a $y \in \mathbf{R}$ such that $x y=1$.
10. Write the converse and contrapositive of the statements from problem 7.

MATH 220 HANDOUT 2-DIVISIBILITY

(1) Show that if $d \neq 0$ and $d \mid a$, then $d \mid(-a)$ and $-d \mid a$.
(2) Show that if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
(3) Suppose that n is an integer such that $5 \mid(n+2)$. Which of the following are divisible by 5 ?
(a) $n^{2}-4$
(b) $n^{2}+8 n+7$
(c) $n^{4}-1$
(d) $n^{2}-2 n$
(4) Prove that the square of any integer of the form $5 k+1$ for $k \in \mathbf{Z}$ is of the form $5 k^{\prime}+1$ for some $k^{\prime} \in \mathbf{Z}$.
(5) Show that if $a c \mid b c$ and $c \neq 0$, then $a \mid b$.
(6) (a) Prove that the product of three consecutive integers is divisible by 6.
(b) Prove that the product of four consecutive integers is divisible by 24.
(c) Prove that the product of n consecutive integers is divisible by $n(n-1)$.
(d) (Challenge problem) Prove that the product of n consecutive integers is divisible by $n!$.
(7) Find all integers $n \geq 1$ so that $n^{3}-1$ is prime. Hint: $n^{3}-1=\left(n^{2}+n+1\right)(n-1)$.
(8) Show that for all integers a and b,

$$
a^{2} b^{2}\left(a^{2}-b^{2}\right)
$$

is divisible by 12 .
(9) Suppose that a is an integer greater than 1 and that n is a positive integer. Prove that if $a^{n}+1$ is prime, then a is even and n is a power of 2 . Primes of the form $2^{2^{k}}+1$ are called Fermat primes.
(10) Suppose that a and n are integers that are both at least 2. Prove that if $a^{n}-1$ is prime, then $a=2$ and n is a prime. (Primes of the form $2^{n}-1$ are called Mersenne primes.)
(11) Let n be an integer greater than 1 . Prove that if one of the numbers $2^{n}-1,2^{n}+1$ is prime, then the other is composite.
(12) Show that every integer of the form $4 \cdot 14^{k}+1, k \geq 1$ is composite. Hint: show that there is a factor of 3 when k is odd and a factor of 5 when k is even.
(13) Can you find an integer $n>1$ such that the sum

$$
1+\frac{1}{2}+\frac{1}{3}++\cdots+\frac{1}{n}
$$

is an integer?
week 3: proof by contradiction
Prove that for $x, y \in \mathbb{R}, \quad P$

$$
x+y>20=y \quad x>10 \text { or } y>10
$$

Proof: Ass um $x+y>20$.
(Q is either tree or false)
(either Q^{c} or (Td is tree)

Proceed by contradiction. Assure $\neg P$, $i, e ., x \leq 10$ and $y \leq 10$. Adding prot grues ${ }^{Q} x+y \leq 20$. This contrad ic1s oor a ssumption. Jins $7 P$ must have beon fale, so P istre, ine,y $x>10$ or $y>10$.

Template for proof by cont radiation

- We want to prose P.
- There are "2 cases": P s the or P is false.
- If we can rut aol " P is false", then P west tres,
- To begin, Ass un $P, 3$ false, in. TP.
- "Argue"; ire, exhilly some (correl) cham in of end up ul a starkement a.
(IE write out a prot of " $7 P \Rightarrow Q^{\prime}$ ")
- Qbsenve (or give a proot thail Q is false.
$\frac{\text { Conches that } \rightarrow P, 3 \text { fulse. }}{(\neg P \Rightarrow Q) \wedge \tau Q \Rightarrow P}$

Intuition?
-Chess "If I move tore /in 4 moves they hive check Sa I Shoddily make that move "

Prove that $x^{2}-y^{2}=1$ has no parineteger solutions.

$$
(x, 4)=(1,0)
$$

not positive.

Prot: Process by contradiction. Assure that $[x, y$ is a positive $7 ?$ integer solution to $x^{2}-y^{2}=1$. Then $(x-y)(x+1)=1$. There are 2 passhdithe: $x-y=1$ anal $x+y=1$, or $x-y=-1$ and $x+y=-1$.

In the 江case addling gives $2 x=2$ The $x=1$ ，bot $x-y=1, y=0$ ．the is a contradiction since y is positive． In the and case，adding gives $2 x=d_{1}$ Sa $x=-1$ ．This is a cont radiation since x is positive．

In both cuges, we get a conluah ictom, Thus our a ssumption was wrons, and we conchad Heat tere are no pasitie inlzer solutruns to

$$
\begin{equation*}
x^{\alpha}-y^{\alpha}=1 . \tag{6}
\end{equation*}
$$

niB. Really was a proof that

$$
\neg P \Rightarrow\left(Q_{1} \text { or } Q_{2}\right)
$$

need bath to give a contradiction.
IE if there are cases in conchsin, need e acc case to be false.

Prove that $L x^{2}=4 y+3$ has no integer solutions.] $R^{D} p$
Proof: Proceed by contradiction. Assure thee there are $x, y \in \mathbb{Z}$ sit.

$$
x^{2}=4 y+3 .
$$

Mere are 2 cases: x is coven ar x istle If x is event len the LHS i even and the RHS isodel. This is 9 Contradiction.
If x is mold, then $x=2 k+1$ for some $k \in \mathbb{Z}$. Plugging in gives

$$
(2 k+1)^{2}=4 k^{2}+4 k+1=4 y+3 .
$$

This a contrualiction, since te LHS has a remeinoler of 1 and the RHS hees a remainder of 3 . ©

Recall: An integer" is prime of its only diviburs are Il anal士n。
$2,3,5,7,11,13,17,19,23$, prices 4,6,8,12 not pirn

$$
65537=2^{a^{4}}+1
$$

GSS38 not prire

Euclid's tHeorem: Here exist in finitely man prices.
Prod. Proceed by contradiction. Assure there are only finitely mam pries. Let's mare them Pr, pa, \ldots, Pr.

$$
\left(P_{1}=2, P_{2}=3, P_{3}=5, \ldots P_{r}=?\right)
$$

Label them so that $p_{1}=\alpha, p_{i+1}>P_{i}$ let $N=P_{1} P_{a} \beta_{3}-P_{r}+1$.
(what dues the Sackenizatinn look lithe) Since $N>P r, N$ isn't prime (blk N is bigger than the biggest prime). By FTA (Fundamental them of arithmekr), N
factas into prives. Let of be are of tose prines. Since pis-ppr are all of the prires, $\exists i$ sti $8=$ Pi. Then olN and of Pi- 咅 $-\cdots$ P, thas by te 2 ool of 3 role,
q/ N-(p,-pr) /ier: of l. This
is a contradretron since $q>1$.
Thus there are infinitely mam peters.

Joke: Here are no uninteresting numbers, positive integers.
Proof: Proceed by contradiction. Assure that some positive inlges ar on interesting. Then flee must he
a smallest uninteresting pasithe inlege. Bot that's pretty interests!
$\left(\begin{array}{lll}\text { This } & \text { a prof techniege: think about } \\ \text { the "s a lest }\end{array}\right.$ the "smallest" counterexample)
if alb and albee then ale

$$
\begin{aligned}
& a(-b \\
& a \mid(b+c)+(-b)=c
\end{aligned}
$$

FTA (Fundumental THM of Arithmetre). let $N \in Z>1$. Then
(i) $\exists p_{1}-1$ Pr prrms s.t.

$$
N=P_{r} \cdot \cdots P_{r}
$$

(ii) If $N=P_{1} \cdots P_{r}=q_{r} \cdots q_{s} s, \frac{k}{n}$ $P_{i} \geq P_{i-1}$ and $8_{j} \geq 8_{-1}$, then $r=s$ and $\forall i, P_{i}=q_{\text {i }}$

$$
\begin{array}{lll}
60 & =2 \cdot 5 \cdot 2 \cdot 3 \\
=2-2 \cdot 3-5 \\
& =2.3-3
\end{array}
$$

Prove (i) Proceed by contredretron Assume that some $N \in P_{2}$, do not factor into prices. Let N be fe Smallest such integer. Then N is nat prince, other wise it is alreaoly furred

This N is composite, write $N=a b$ were $1<a, b<N$. Since $a, b<N$ and N is te smallest integer that doesnit facts, a and b factor. Write $a=3, \cdots-\operatorname{Pr}, b=8, \cdots a x$ Then $N=a b=\left(p_{1} \cdots p_{r}\right)\left(q_{1} \cdots q_{s}\right)$.

This is a contradiction, sine we just factoral N, 18

Lecture $\overline{7} 9 /(s / 2 \alpha$ more contradietion want to prove P.
Assume $\neg P$.)
Argue.
Condude Q. IP $\Rightarrow Q$
Concude Q.
obsere that a is fulse
Concluole P.

Prove Hal $\forall n \in \mathbb{Z}, n$ and $n+1$ have no common prime facers)
Prats. Proceed by contradiction. Assure $\exists n \in \sum$ sit. n anal $n+1$ have sore Common prime diußers. Lets be a prime Sit. pin and pln+1.

Then pl $(n+1)-n$, ire., plo.
This is a contradiction, since P is prime, and primes ar >1.

Let $a, b, c \in \mathbb{Z}$. Sps $\quad a^{2}+b^{2}=c^{2}$. Show that $a b c$ is even.
Proof: Proceed by contradiction.
Ass one $a^{2}+b^{2}=c^{2}$ and abe is odd. Then $a_{i} b$, and c ore each oolol. (Bk if ore were even, abe would be en?

Then a^{a}, b^{2}, c^{a} are aol (ale products of odd integer ace odd). Then $a^{2}+b^{\alpha}$ is even, but $c^{2} B$ add. This is "even = odd" w hitch is a contradictor.

Defn: A number x is rational if $\exists a, b \in \mathbb{Z}$ sit $b \neq 0$ anol $x=a / b$
A rational \# is reduced if a and b have ro conmen prime divisers
Examples: $\frac{2}{3}=\frac{4}{6} \quad$ Fadis erem rationalt $\begin{aligned} & \text { can be reducel }\end{aligned}$ redicaed not radured.

Prove: $\sqrt{2} \notin \mathbb{Q}$. (It $\sqrt{2}$ is not Ratroul.) Proof: Proceed by contradiction Assume $\sqrt{2} \in \mathbb{Q}$. Then $\exists a, b \in \mathbb{R}$ st. $b \neq 0$ and $\sqrt{2}=a / b$. Assume that a tb are reduced. In particher at lease ore of a or b is odd. Then $b \sqrt{2}=a$. Then $b^{2}-2=a^{2}$.

Since te LHS is even, te RHS is even, icre, a iscorn. This a is even. (By twar it a B oold a^{α} is odd.) Then 4 (a) (1 ind ced, if d le $+f f l y$ th $d f l e g)_{2}$ wrile $a=2 k$ for some $k \in Z$. Then $b^{2} \cdot 2=(2 k)^{2}=4 k^{2}$. Tlen $b^{2}=2 k^{2}$. Sime the rHS is evan, b^{2} isean, so b is cen. This is a contradician,

Since $a+b$ are vol both oddities

$$
\begin{aligned}
& \underline{H \omega:} \sqrt{3} \notin \mathbb{3} \\
& 3^{2 / 3} \\
& \tan 1 \\
& \frac{\pi}{e}=3,141 \cdots
\end{aligned}
$$

Prove: $\log _{3} 2 \notin \mathbb{Q}$.
Recall: $3^{\log _{3} 2}=2$

Proofs Proceed by contradiction.
Assume $\log _{3} 2 \in \mathbb{O}$. Then $\exists a, b \in$ 卫 s. $b \neq 0$ and $\log _{3} a=\frac{9}{b} . \omega m A$ (we man assume) $a+b$ are reduced. Thin $2=3^{\log _{3} 2}=3^{a / b}$.

Then $a^{b}=3^{a} . \quad\left(\left(3^{a / b}\right)^{b}=3^{a}\right)$
Since $b>0$, the LHS is em. Bot te RHS is oold. Thrs is a contradiction. 泗

Prove, if $a \in \mathbb{Q}$ and $b \notin Q$, then at ϕQ
Profs. Assume $a \in Q$ and $b \notin \subseteq$. Proceed by contradiction. Ass ume $a+b \in \mathbb{Q}$. J len
 $\mathcal{F}, f \in 卫 s, d . f \neq 0$ and $a+b=e / f$

Then $b=(a+b)-a=\frac{e}{f}-\frac{c}{d}=\frac{e d-c f}{f d}$.
Sire ed $-c f, f d \in$ 卫 anol fd $\neq 0$, $b \in \mathbb{Q}$. This contradicts $b \notin Q$. We conclude that $a+b \notin Q$.

Let a, b, c be odd. Let x be a solution to $a x^{2}+b x+c=0$. Prove $x \in \mathbb{Q}$.
Profs: Assure a, bic are cold.
Assume $a x^{2}+b x+c=0$.
Proceed by contradiction. Atsoure $x \in Q$.

Then $\exists d, e \in$ Dst $e \neq 0$ and $x=d / e$. WMA dote are reduced.
Then $a\left(\frac{d}{e}\right)^{d}+b \frac{d}{e}+c=0$. I begin Seganda3
Then $a d^{2}+b d e+c e^{2}=0$. $(1,1)$
Sine die are reduced, at least ore is odell.

There are 3 cases: die an odd, $d z$ en te Todd, or d is add $f e \sqrt{3}$ ever
In case, the LHS of $(1,1)$ is "od Nl ald todd
a contrudietres.

$$
=0601=\operatorname{evec}^{1} A
$$

In coned, tells is "e te to $=e^{u}$, g Case 3 is similar.
In each cage, we have a contradiction s
p is prime of " $p=a b$

$$
a= \pm 1 \text { or } b= \pm 1^{\prime \prime}
$$

Fespaet:

$$
1=1 \cdot 1=1.1 \cdot 1=\ldots
$$

Fermat:

$$
\begin{aligned}
& 2^{0}+1=1+1=2 \\
& 2^{1}+1=2+1=3 \\
& 2^{2}+1=4+1=5 \\
& 2^{4}+1=16+1=17 \\
& a^{8}+1=256+1=257 \\
& a^{16}+1=65536+1=65537
\end{aligned}
$$

Fermeat conj'd that $\forall n, \quad a^{2^{n}}+1$ is False n prime. Modem 60y $\partial^{a^{2}}+1 \quad 13$ reewn prie if $n \geq 5$.

$$
\begin{aligned}
& 2^{3}+1=8+1=9=3.3 \\
& 2^{5}+1=32+1=33=3.11 \\
& 2^{7}+1=128+1=129=3.43
\end{aligned}
$$

Problem: if $2^{n}+1$ is price then n is even.
Proof: Assure $2^{n}+1^{n}$ is prime.
Pared by contradietros. Assure $n 13$ odd. $\binom{r^{2}-1=(n-1)(n+1)}{x^{n}-y^{n}=(x-y)\left(x^{n}+x^{-1}\right) y+\cdots y^{n-1}}$

Siace n is odol, $(-1)^{n}=-1$.
Thus $\partial^{n}+1=a^{n}+1^{n}=\partial^{n}-(-1)^{n}$.
This facles as $(2-(-1))\left(2^{n-1}-a^{n-1}+\cdots \pm 1\right)$

$$
=3 \cdot ?
$$

If $\eta^{n}+1>3$, it is rot prive b/c 3 3 9 prore dusse. 10

Inductian: Gauss Syo

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
100
\end{array}+\begin{array}{l}
2+\cdots+100=5 \\
99
\end{array} \cdots+1=5\right. \\
& 101+101 \ldots+101=\overline{2 S}=101-100 \\
& \int_{10}^{s}=\frac{101.100}{2}
\end{aligned}
$$

WTP: $\forall n \in C_{r_{0}}(1+2+\cdots+n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

$$
\begin{array}{ll}
n=1 & 1 \\
n=2 \quad 1+2 & =\frac{1(1+1)}{2}=1 \\
n=3 \quad 1+2+3 & =\frac{1-2}{2}+2=2\left(\frac{1}{2}+1\right)=2\left(\frac{3}{2}\right) \\
& 1+2+3 \times n
\end{array}=\frac{3 \cdot 4}{2}+4=4\left(\frac{3}{2}+1\right)=3\left(\frac{4}{2}\right)=4\left(\frac{5}{2}\right) .
$$

Prof!, Proceed by ind octron. The statemen! is already tre for $n=1 \quad$ ble $\quad 1=\frac{1(d)}{2}=1$. Assursure flat we already know the staitent \&or n.) IE assume thal tho is P(0).
(1+a+… $+n=n(n+1) / 2$.
Addiy $n+1$ to botharks ghes

$$
1+2+\cdots+n+(n+1)=\frac{n(n+1)}{\alpha}+(n+1)
$$

The LHS of thr is the LHS of what we wat to proe. The RHS is

$$
(n+1)\left(\frac{n}{2}+1\right)=(n+1)\left(\frac{n+2}{2}\right)=(n+1) \frac{(n+1+1)}{\alpha} \text {. }
$$

We conclude theit $\forall n \in S_{00}$, a to errob 13
$1+2+\cdots+n=\frac{n(n \mu)}{\gamma}$.

Let $P(n)$ be a statement which depends on some integer (usually pas) n.
(Ex_ $\left.P(n)=" 1+\alpha+\cdots+n=\frac{n(n+1)^{n}}{2}\right)$
Coal: Prove $P(n) \quad \forall n \in \mathbb{Z}>0$.

$$
\begin{aligned}
& \text { Step1: Prae } P(1) \quad \text { "Base Case" } \\
& \text { Step 2: Preve "P(n) } \Rightarrow P(n+1) \text { " } \begin{array}{l}
\text { "Inductue } \\
\text { Step" }
\end{array} \\
& \text { "Induction" }=P(1) \wedge " P(n) \Rightarrow P(n+1) " \\
& \forall n \in 2>0, P(n)
\end{aligned}
$$

$$
P(1), P(d), P(B), P(4), \ldots, P(a), P(a+1), \ldots
$$

Wamizoi: $P(n)=\frac{n(n+1)}{2} \leftarrow$ Not "t or F^{u}

$$
P(n)=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Dole n is just a rassatle,
$p(1)$ \& $P() \Rightarrow P(a+1)$ "prose the foll winy $\cos _{x}^{\prime \prime}$

$$
\begin{aligned}
& P(a) \Rightarrow P(a+1) \\
& P(a-1) \Rightarrow P(a)
\end{aligned}
$$

Varran3: $P(0) \cap P(n) \Rightarrow P(n+1)$

$$
\begin{aligned}
& P(2) \cap P(n) \Rightarrow P(n+1) \\
& P(2) \cap P(n) \Rightarrow P(n+2) \\
& \Rightarrow \forall n \in \mathbb{E}_{20,} P P(n) \\
& P(1) \cap P(n) \Longrightarrow P(n-1) \\
& \forall n \in \mathbb{R}(0, P(n)
\end{aligned}
$$

Pefire: a sequence $a_{1}, d_{d}, \ldots, d_{1}, \ldots$.

$$
\begin{aligned}
& a_{1}=2=2 \text { " "recurive datn"1 } \\
& a_{n}=2 \cdot a_{n-1} \\
& a_{2}=2-d_{1}=2-2=4=2_{m}=2 \cdot d_{m 1} \quad a_{n+1}=2-a_{n} \\
& a_{3}=2-a_{2}=2 \cdot 4=8=2^{3} \\
& a_{a}=2-a_{3}=2 \cdot 8=16=2^{4}
\end{aligned}
$$

Clain: $\forall n \in ?_{70}, a_{n}=2^{n}$.

$$
P(n)={ }^{\prime \prime} d_{n}=2^{n \prime}
$$

Proof. Procead by inductron.
Base case: $P(1)$ is " $a_{1}=2^{\prime \prime}$, i, e, " $2=\partial^{\prime \prime}$. $(P(n) \Rightarrow P(n+1))$ ThB B tre. Fnductire step: Assume $P(n)$, IE, $a_{n}=2^{n}$, (wTp $P(n+1)$, ive, $a_{n+1}={ }^{n+1}$) Then $a_{n+1}=2-a_{n}$ by the defn. f a_{n}. Then $a_{a+1}=2 \cdot a^{n}=j^{1-1}$. olus $P(n+1)$ istroe.

$$
\begin{aligned}
& \text { Detice: } a_{1}=0 \\
& \text { Paxe: } \forall n \in Z_{20} \text {, } \\
& a_{n}=\sqrt{3+2 a_{n-1}} a_{n<3} \\
& a_{1}=0 \\
& a_{2}=\sqrt{3+2 \cdot 0}=\sqrt{3} \\
& P(h)={ }^{\prime} a_{n}\left(3^{1 "}\right. \\
& a_{3}=\sqrt{3+2-a_{2}}=\sqrt{3+2 \sqrt{3}} \\
& a_{4}=\sqrt{3+2 a_{3}}=\sqrt{3+2 \sqrt{3+2 \sqrt{3}}}
\end{aligned}
$$

Proof: Pracecd by riduction.
Bose case: $P(1)$ is "d, $<3^{\prime \prime}$, ire, " $0<3^{\prime \prime}$.
Thrs is tre.
I.S. Assume $P(n)$ ji,e., " $\alpha_{n}<3$ ".

$$
a_{n+1}=\sqrt{3+2 a_{n}} \text {. Since } a_{n}(3)
$$

$$
\begin{aligned}
a_{n+1}=\sqrt{3+2 a_{n}}<\sqrt{3+2.3} & =\sqrt{3+6} \\
& =\sqrt{9}=2 .
\end{aligned}
$$

Thes $a_{n+1}<3$. . 0

Claim: " $1+2+4+8+\cdots+2^{n-1}=2^{n}-1$ "
Prot: Paced by induction.
$\forall n \in \mathbb{D}_{0}$
$B C: P(1)$ is " $1=2-1$ ". This stare.
IS: Assume $P(i)$, ir., $1+\alpha+\ldots+a^{i-1}=a^{i}-1$.
(wit $P(i+1)$, ire., $\left.1+\alpha+\cdots+2^{i+1}=a^{i+1}-1\right)$

$$
1+2+\cdots+2^{i-1}+d^{i}=2^{T+1}-1
$$

Adding a^{i} to each side ging

$$
1+\alpha+\ldots+a^{i 1}+a^{i}=a^{i}-1+\alpha^{i} .
$$

The LHS is He LHS of P(r+1).
The RHS 3 a $a-a^{i}-1=a^{i+1}-1$.
Thir is the Res of $P(i+1)$.

Claim: $\forall n \in \sum_{20}, \quad 3 \mid 4^{n}-1$.
$p(n)$
Proof: Proceed by induction,
BC: $P(0)$ is " $3 / 4^{\circ}-1^{\prime \prime}$, ire, $3 / 0^{"}$ which is true.

IS: Assune $P(n)$, i,e., $314^{n} \lambda$. ((TP $3 / 4^{n+1}-1$) then $\exists m \in \mathbb{D}$ st. $4^{n}-1=3 \mathrm{~m}$. Thn $4^{n}=3 m+1$.
Then $4^{n+1}-1=4^{n} \cdot 4-1=(3 m+1) \cdot 4-1$ $=12 m+4-1=12 m+3=3(2 m+1)$.

This $3 / 4^{n+1} \lambda$

More Induction

$$
\text { WTP } \forall n \in C_{0}, P(n)
$$

$$
B C=\text { Prove } P(1) \text {. }
$$

IS: Prove "PC) $\Rightarrow P(a+1)^{"}$

Prove: $\sum_{i=1}^{n}-i^{2}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
Proof: Proceed by induction.
Base case: $P(1)$ is $" 1^{2}=1(2)(3) / 6^{4}$

$$
F E \quad 1=1 .
$$

Inductire step: Assume $P(a)$, i,e.,

$$
1^{2}+2^{2}+\cdots+a^{2}=a(a+1)(d a+1) / 6 .\binom{\text { wTP }}{P(a) \Rightarrow P(a+1)}
$$

Add ing (aH1) ${ }^{2}$ gives

$$
1^{2}+2^{2}+\cdots+a^{2}+(a+1)^{2}=\frac{a(a+1)(2 a+1)}{6}+(a+1)^{2}
$$

The LHS is the LHS of $\frac{6}{6}(a+1)$.

The RHS is $\frac{a(a+1)(a+n)}{6}+(a+1)^{2}=$

$$
\begin{aligned}
& (a+1)\left(\frac{a(2 a+1)}{6}+\frac{\overline{6(a+1)}}{6}\right)= \\
& (a+1)\left(\frac{2 a^{2}+a+6 a+6}{6}\right)=\left(\frac{(a+1)\left(2 a^{2}+7 a+6\right.}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(a+1)}{}= \\
& \frac{(a+d)(2 a+3)}{6}=\frac{(a+1)+1)(2(a+1)+1)}{6}, \text { This is }
\end{aligned}
$$

RMS of $P(a+1)$.

Claim! $\forall a \in 2 \geq 0,3^{a}$ B odd.
Proof. BC: $P(a)$ is "30 is odd", ice." "I is oodol. This' is the,
Is: Assume $g(a)$, i $R_{0}, \quad 3^{a}$ is odd.
(wTP: P(a+1), IE $3^{a+1} B$ odd)

$$
\sqrt{11} \sqrt{3^{9}} \cdot 3
$$

Then $3^{a+1}=3^{a}-3$. Since 3^{a} rcd +3 Mod, and sine the product of add integer is ode/
3^{a+4} is add.

Slogan: "Amy time somethry "warns" of 2 things, it Works for many tries."

Example: we know that $\eta_{\text {odd }}$. odol $=0 d l^{\prime \prime}$

$$
\text { Pf: } \begin{gathered}
(2 a+1) \cdot(2 b+1)=4 a b+2(a+b)+1) \\
\operatorname{ren}-b l .
\end{gathered}
$$

Claim! If d_{1}, d_{n} are edel integes then $d_{1} \cdot a_{0} \cdots a_{n}$ is oodo!
P4. Proced by inductron. $B C$ is $8(1)$ iee, "it a, is ood, then $a, i s$ odd". This istre.
$P(\alpha)$ is "At a_{1}, da are odd, then $a_{1} d_{2}$ is oed:" this is the and we prenoush pored it,
FS: Prue that for $n \geq 2, P(n) \Rightarrow P(n+1)$

Assume $P(n)$, trey" if $a_{1},-a_{n}$ are odd then $a_{1} \cdots d_{n}$ is odd."

$$
\begin{aligned}
& \left.a_{1} \cdots-a_{n+1} \text { is add }\right] \text {, } \tau a_{\text {er }} \text { aredols }
\end{aligned}
$$

Assume a_{1}-, a_{n+1} are add.

Then $a_{1} \cdots a_{n}$ is odell because $P(n)$ i tree. Then $\left(a_{1} \cdots a_{n+1}\right)=\left(a_{1} \cdots a_{n}\right) \cdot a_{n+1}$. Sine $\left(\alpha_{1}-a_{n}\right)$ sod anal $a_{n+1} 13$ odd, Since we knew $P(d)$, Heir product is odd. Thus $a,-a_{n+1}$ is odd a

$$
\begin{aligned}
& a+b=b+c \\
& a+b+c=a+(b+c)=a+(c+b) \\
&=(c+b)+9
\end{aligned}
$$

2 buse cuses

$$
P(1) \neg P(d) \wedge(P(n) \Rightarrow P(n+1))
$$

The proof that $P(n) \Rightarrow P(n+1)$ doesíl work for $n=1$.

Prove; $n!>2^{n}$ for $n \geq 4$.

$$
n!=n-(n-1)(n-2) \cdots 1 \left\lvert\, \begin{array}{ll}
n= & P(n)= \\
1 & 1!=1>2 \\
2 & 2!21>4 \\
3 & 3!=6>8 \\
4 & 4!=24>16
\end{array}\right.
$$

Proof! Proceed by induction.
$B C: P(4)$ is " $4!>22^{4 \prime}$, ire.., " $24>16$ ". This B tree.
Assume $n \geq 4$ and assure $P(n)$, Ne, $n!>2$. (FTP $P(n+1)$, ire, $(n+1)!>2^{n+1}$)

Muttiplying $P(n)$ by $n+1$ gives

$$
(n+1) n!>(n+1) 2 \text { ! }
$$

The RHS of this is $(n+1)!$.
Sinec $n \geq x, \quad n+1 \geq 5 \geq 2$.
Thus $(n+1) \alpha^{n} \geq 2-a^{n}=2^{n+1}$.
we concluse that $(2 n)!=r^{n+1}$ 四

Fibonacei \#'s $F_{1}=1, F_{2}=1, F_{3}=1+1$

$$
\begin{aligned}
& F_{4}=3, \ldots \\
& 1,1,2,3,5 \sqrt{8}, 13,21,34,55,89,1144, .
\end{aligned}
$$

Defon: $\begin{aligned} & F_{1}=1, F_{\alpha}=1 \\ & F_{n}=F_{n-1}+F_{n-\alpha}\end{aligned}$

Same as

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
F_{a} & =F_{a-1}+F_{a-2} \\
F_{n+2} & =F_{n+1}+F_{n} \\
F_{a n+2} & =F_{d n+1}+F_{d n}
\end{aligned}
$$

Claim: "F $F_{1}+F_{3}+F_{5}+\cdots+F_{\text {an-1 }}=F_{\text {an }} "$
Ex's Mr, (2) 5,813 (di) $p(n)$
Prot. (BC) $P(1)$ is "F $F_{1}=F_{2} "$ llen " $1=1$ ". This is twe.

$$
\begin{aligned}
& \text { IS: Assume } P(n) \text {, 1/e, } \\
& { }^{\prime \prime} F_{1}+F_{3}+\ldots+F_{2 n-1}=F_{2 n}^{\prime \prime} .
\end{aligned} \begin{aligned}
& 2(n+1)-1= \\
& a_{n+2-1} \\
& 2 n+1
\end{aligned}
$$

Mdding $F_{\text {auri }}$ to both sioles gives

$$
F_{1}+F_{3}+\cdots+F_{a n-1}+F_{a n+1}=F_{m}+F_{\text {ann }} .
$$

By the dedn, $F_{a n}+F_{a n+1}=F_{a n+a}$.

Thus $F_{1}+F_{3}+\cdots+F_{\text {ath }}=F_{\text {axtan }}$ iren $P(n+1)$ is the
"Lucas"

$$
\begin{aligned}
& 2_{2} 1,3,4,7_{1}(1,18,19, \ldots \\
& L_{1}=2 \quad L_{2}=1 \\
& L_{n}=L_{n-1}+L_{n-2}
\end{aligned}
$$

Cloin: $\forall n \in \partial_{00}, " F_{n}<\partial^{n \prime \prime}$.
Proofi (BC) P(1) is "F F_{1} Cd", irey $^{\prime}$ 1くd. P(d) is "Faくa", ire., 1 24. Tlese are true.

IS: Assume $P(n)$ and $P(n+1)$, IE $F_{n}<\partial^{n}$ and $F_{n+1}<\partial^{n+1}$.
(wit $P(n+d)$, ire, $\left.F_{\text {nd }}<\partial^{n+\alpha}\right)$ By define. $F_{n+2}=F_{n+1}+F_{n}$. Since $P C_{1}$ and $P(n+1)$ are true, $F_{n+1}+F_{n}<2^{n+1}+\alpha^{n}$,

It, $F_{n+\alpha}<\partial^{n+1}+\partial^{n}$. (want $\partial^{n+\alpha}$)
Since $a^{n}<a^{n+1}, a^{n+1}+a^{n}<a^{n+1}+\partial^{n+1}$ $=2 \cdot 2^{n+1}=2^{n+2}$. Thus
$F_{n+\alpha}<\partial^{n+h}$.

$$
P(1) \cap P(\alpha) \wedge(P(n) \cap P(\cap+1) \Rightarrow P(n+d))
$$

Claim: " $F_{n-1} \cdot F_{n+1}=F_{n}^{2}+(-1)^{n}{ }^{n}=P(n)$
Proof: " $P(q)^{\prime \prime} B$ the stailement $1,1,2,3,5,8$

$$
\begin{aligned}
" F_{1} \cdot F_{3} & =F_{2}^{2}+(-1)^{2}{ }^{2}, ~, 1, e_{-1} \\
1 \cdot 2 & =1^{2}+(-1)^{2}
\end{aligned}
$$

$\alpha=\alpha$. This is the

FS- Assume $P(a)$, ile, $F_{a-1} \cdot F_{a+1}=F_{a}^{2}+(-1)^{d}$. (wTp P(a+1), i,e, $\left.F_{a}-F_{a+2}=F_{a+1}^{2}+(-1)^{a+1}\right)$ By dodn, $F_{a-1}+F_{a}=F_{a+1}$, i, es, $F_{a-1}=F_{a+1}-F_{a}$. Subing gives $\left(F_{a+1}-F_{a}\right)-F_{a+1}=F_{a}^{2}+(1)^{1}$ Then $F_{a+1}^{2}-F_{a} \cdot F_{a+1}=F_{a}^{\alpha}+(-1)^{a}$.

Yen $F_{\text {at }}^{2}-(-1)^{a}=F_{a}^{2}+F_{a} \cdot F_{a+1}$.
Then $F_{a n}^{\alpha}+(-1)(-1)^{\alpha}=F_{q+1}^{\alpha}+(-1)^{a+1}$

$$
\begin{aligned}
& =F_{a}\left(F_{a}+F_{a n}\right)=F_{a} F_{a+a} \text { by the dat. } \\
& \quad \operatorname{det} \hat{\jmath}^{\prime} \text { fib. }
\end{aligned}
$$

国

Week 6: Sets
Set $=$ "container", ardor does not mather defined by what they contain
Detain A self is a collection of abjects.
An abject of a gel is called an element.
we write tho 3 as $a \in S$.
Examples

$$
S=\{1,2,3,4,5\}
$$

$才\{\ldots, \backslash\}$ in latex

$$
1 \in S, 0 \notin S, \pi \phi S
$$

$$
\begin{aligned}
& T=\{2,1,3,4,5\}=S \\
& T=S
\end{aligned}
$$

$\{1, \sqrt{2}\},\{\sqrt{2}, \pi\},\{$ Devil, Jena Sard\} ~ $\}$
$\{1,2, \ldots, 10\}$ use "..." to indiceite sere
\backslash loots vs ... pattern

$$
\{2,4, \ldots, \text { na }\}
$$

Camman Sels

$$
\begin{aligned}
& \mathbb{N}=\{1,2,3, \ldots\} \\
& \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
\end{aligned}
$$

Q, $\mathbb{R}, \mathbb{C}=$ complex $\#^{r} s$
$\sqrt{2} \notin \mathbb{Q}, \sqrt{2} \in \mathbb{R}$
$\overline{-2} \notin \mathbb{R}$

$$
\mathbb{E}=\{\ldots,-4,-2,0,2,4, \ldots\}=2 \mathbb{2}
$$

$d \in Z_{21}$, we define

$$
\begin{aligned}
& d \Sigma=\left\{\text { "multiples of } d^{\prime}\right\}\left[\begin{array}{l}
11 \\
\text { more } \\
\text { detoril }
\end{array}\right. \\
& =\{\ldots,-2 d,-d, 0, d, 2 d, 3 d, \ldots \xi \\
& =\{d n: n \in \mathbb{Z}\} \\
& =\{n: n \in D\{d \ln \} \\
& =\{n \in \mathbb{Z} \text { s. }\lrcorner \cdot d \mid n\}
\end{aligned}
$$

Generd constroctor:
$\left\{\begin{array}{l}\text { formula: : paraméters } 1 \text { conditions }\} \\ \text { "." "1 }\end{array}\right.$
":" "1" = "soch that" = "st."

Example: $a, b \in \mathbb{R}$

$$
\begin{array}{ll}
{[a, b]=\{x \in \mathbb{R} \text { s.t. }} & a \leq x \leq b\} \\
{[a, b]=\{x \in \mathbb{R} \text { s.t. }} & a \leq x<b\}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i=0}^{n} \\
& 11 \text { i" } \\
& \text { uan u } \\
& i=0 \\
& \left.a_{i} x^{i}: n \in \mathbb{Z}_{20}, a_{i} \in \mathbb{R}\right\} \\
& \frac{8}{0} \frac{1}{5} \\
& \cdots \cdots \\
& \begin{array}{l}
\text { z 心 ひ ひ : f } \\
\text { waf sva! founf }
\end{array} \\
& \text { \| If } \\
& 3 \text { ! } 6 \text { yoloz } \\
& \stackrel{\stackrel{\pi}{\nabla}}{\stackrel{\downarrow}{\sim}}
\end{aligned}
$$

> A set can contain amything.
> -
> 11

11 Sets can be clematis b sots.
Analogy Bis Amazon box containing many smaller boxes.

Examples;

$$
T:=\left\{\begin{array}{l}
\\
T, 3,\{2\},\{3,4\}
\end{array}\right\}
$$

T has 3 elements, not 4

$$
\begin{aligned}
& \{1\} \in T,\{\alpha\} \in T,\{3,4\} \in T \\
& \{1,2\} \notin T \\
& S=\left\{\{2\}, 3 \begin{cases}3 \in S & " \in " \text { is not transitive } \\
\{2\} \in S & x \in y \text { i } y \in z \quad x \in z \\
2 \in S\end{cases} \right. \\
& 2 \neq\{2\} \\
& R=\{1, \xi 13\} \begin{array}{l}
1 \in R \\
\{13 \in R
\end{array}
\end{aligned}
$$

Defni: we sun that 2 sets S and T are equal if $x \in S \Longleftrightarrow x \in T$.
(ives $S+T$ have the same elements)
Ex. $\{1,23=32,1\}$

$$
\begin{array}{ll}
\xi 1,23 \neq\{2,3\} \text { be } 1 \in\{1,2\} \text { and } \\
\mathbb{T} \neq \mathbb{Q} & 1 \notin\{2,3\}
\end{array}
$$

ole $\frac{1}{2} \in Q$ bot $\frac{1}{2} \notin$?.
Deffer, Let S and T be sets. We san that S is a subset of T if $x \in S \Rightarrow x \in T$. In this case we write $S S T$. (or SCT)
(Equivalently: $\forall x \in S, x \in T)$) $3 x \in S$ st. $x \notin T$
Example: $\{1,2\} \leq\{1,2,3\}$

$$
\begin{array}{ccc}
\{1,2,3\} & \$ 1,2\} \\
3 & & -\frac{4}{3}
\end{array}
$$

Remark: $\quad S=T \Leftrightarrow$
$S \subseteq T$ anal $T \subseteq S$

Proofs in sets

$$
P \Rightarrow Q
$$

Recall " $A \subseteq B$ " means $x \in A \Rightarrow x \in B$

An implication
Start by "assuming the ass umpticn"
(1) "Assume $x \in A$ "
(2) Write out what " $x \in A$ " means
(It write ot the deon
(3) "Argue" or "da calculators"

(4) Conclude Hat $x \in B$. has some defoe f in step 3, you verity this

$$
d \mathbb{D}=\{n ; n \in \mathbb{D} \mid\{\mid n\}
$$

Prove or disprove：
（i） $6 \pi \leq 2 \pi$
（ii）$\alpha 卫 \leq 62$
Proof：（ii）This is false bile $\alpha \in 2 \mathbb{Z}$ ， bot $2 \notin 6$ ？（bile 612）．
（i）Let $x \in 6 \mathbb{D}$ ．Then $x \in \mathbb{Z}$ and $61 x$ ．
Since alb，by transitivity，$a l x$ ．Thus $x \in 2$ ，四。

$$
\begin{aligned}
A & =\left\{4^{n}-1: n \in Z \geq 0\right. \\
B & =3 \geq \geq 0 \\
& :=\left\{n \in \sum_{20} \text { sit. } 3 / n\right\}
\end{aligned}
$$

We know from week a that $3 \mid 4^{n}-1$. IE $A \subseteq B$
Claim: $A \subseteq B$.
Proof: Let $x \in A$. Then $\exists_{n} \in \sum_{20}$ sit. $x=4^{n}-1$. By week, $3 \mid 4^{n}-1$. The $4^{n}-1 \in 3$?

Covers? Is $B \leq A ? N O!$

$$
6 \in B \text { bot } 6 \notin A \text {. }
$$

ϕ is the set sit．＂$x \in \notin$＂is folse $\forall x$ ．
Claim：$\forall \operatorname{set} A, \phi \subseteq A$ ，
Prod，＂There is nothing to cheek＂ar
Is every $x \in \phi$ also $x \in A$ ？Yes．．．
Contradiction：Suppose $\phi \notin A . \quad\binom{\phi \subseteq A$ means }{$x \in d \Rightarrow x \in A}$
$\mp t$ suppose that $\left.\exists x \in \Phi s_{1}\right\rfloor x \phi A$ ．
Since $x \in \phi$ is alkenes false，we found a contradicter． you cant dis pare $\phi \leq A$ ．

Contrapositive：$\quad x \notin A \Rightarrow x \notin \phi$ ．
Suave $x \notin A$ ．well．．．．．$x \notin \phi$ is the．囫

Prus or dispose：
（i） $6 卫=2 \Omega 03$ R F
（ii） $6 卫=2 卫 \cap 3 卫 T$

$$
d 卫=\{n \in 卫 \text { st. } d \ln \}
$$

Proof
（i）This is false： $2 \in 2 卫 032$ ，bot $2 \notin 6$ 卫．
（ii）＂$=$＂is＂s＂and＂2＂
＂\subseteq＂Let $x \in G$ 卫。 Then $x \in$ 卫 and $G \mid x$ ．
（WIS：$x \in 2$ 卫 3 卫，ire，$x \in 2$ and $x \in 3$ ，ire．，$x \in 卫, a 1 x$ and $3 l_{x}$ ）
Sine 216 and 36 ，by transitwity of divaran， $21 x$ and $31 x$ ．
This $x \in 22$ and $x \in 32$ ，so $x \in 22 n 32$ ．
＂د＇Let $x \in 2$ rn 3 r．Then $x \in 2$ s and $x \in 3$ 2．Then $x \in 己$ and $2 \mid x$ and $31 x$ ．
（wT：$x \in 6$ e ，ire．， $6 \mid x$ ）．
Since $\operatorname{ged}(2,3)=1,2.3 \mid x$ ．Th es $x \in G 2$ ，，

Power Set：Let A be a εt ．Then we dative the power set
$P(A)$ to be

$$
P(A)=\{B \leq \perp B \subseteq A\}
$$

Examples：

$$
\begin{aligned}
& A=\{1,2\} \quad P(A)=\left\{\left.\begin{array}{l}
\{3,\{23, \phi, 31,2\} \\
\xi 13 \leq\{1,2\} \\
\{2\} \leq \xi 1,2\} \\
\varnothing \\
\{1,2\} \leq\{1,2\} \\
\{\xi,\} \in P(\{1,2\}\} \\
1
\end{array} \right\rvert\, \notin P(\{1,2\})\right.
\end{aligned}
$$

Rule：$B \in P(A) \Leftrightarrow B \subseteq A$

$$
1 \notin p(\{1, d\}) \text { bl } 1 \notin\{1,1\}
$$

Claim：\＃$P(A)=2_{2}^{* A}$
Ex：$A=\{73$

$$
\begin{aligned}
& P(A)=\left\{\phi_{1} A\right\} a^{\prime} \\
& E x: P(\phi)=\left\{B: B S_{\phi}\right\} \\
&=\{\phi\} \\
& \# \phi=0
\end{aligned} \quad \begin{aligned}
\#\{\phi=1 \quad 1 & =2^{\circ}
\end{aligned}
$$

Ex：$\phi_{i}, A \in P(A)$ bile $\begin{aligned} & \phi s A \\ & A \leq A\end{aligned}$

$$
\begin{aligned}
& P(己)=\left\{\begin{array}{l}
\phi, 卫, \pi, 3 \geq, 42, \ldots d \pi, \ldots \\
\{13,\{2\}, 33), \ldots \\
31,23,31,2,3\}, \ldots
\end{array}\right\} \\
& E \in P(D) \\
& d D \in P(D) \\
& \mathbb{R} \notin P(\mathbb{Z}) \text { hic } \mathbb{R} \$ 己 \text {. }
\end{aligned}
$$

Letgo of the formilas

$$
A=\{1,2,3\}, B=\{4,5\}
$$

$$
f(1)=4 \quad f(2)=4 \quad f(3)=5
$$

2 problems
Ambiguas (what is $f(1)$?)
Didnt defire f(a)...
From For amay....just dots
$\begin{array}{ll}0 \\ 0 & \rightarrow 0 \\ 0\end{array}$

5 is pait of te codamer 5 is not an aulput

Demain codemain
inpols potentral outputs
race cimen

Actual arpucts

$$
\begin{aligned}
& \text { 卫 } \xrightarrow{9} \text { 卫 } \\
& x \longmapsto\left\{\begin{array}{cc}
x / 2 & \text { if } x \in \mathbb{E} \\
3 x+1 & d / w
\end{array}\right. \\
& g(1)=4 \\
& g(d)=1 \\
& \underset{\sim \rightarrow}{\text { Caction }} \underset{\sim}{h} \xrightarrow{\text { invalio }} \text { ble } x / 2 \notin \mathbb{Z} \\
& x \mapsto x / 2 \\
& \begin{array}{l}
E \rightarrow 2 \\
x \longmapsto x / 4
\end{array} \text { ak }
\end{aligned}
$$

$$
\begin{aligned}
& (0=1+x t+x) \\
& c=\left(1 u_{p}+\right)^{8} \\
& \sin \left(1 q_{0} b u 0\right)
\end{aligned}
$$

Examples：
$\mathbb{R} \xrightarrow{f} \mathbb{R}$
$x \longmapsto 2 x$
卫 $\xrightarrow{9}$ 已
$x \longmapsto 2 x$
己 $\xrightarrow{h} \mathbb{E}$
$x \longmapsto 2 x$

$n \longmapsto 2 n$
$h=h_{\alpha}$

$f \neq g$
$f(1) \neq g(1)$
$\begin{array}{ll}11 & 11 \\ 2 & 3\end{array}$
$f(n)=n+1$
$f(n)=2 n$
$f \neq g$ ble dilferen）demans and codemains．
$g(\sqrt{2})$ is codesied W / C
$h \neq g$
ble different codemenes．

Def. Let A and B be sets and $f: A \rightarrow B$ be a function.
The image Crangel of $f 13$
(write as inf or $f(A)$)

$$
\sin f=\{f(a): a \in A\}
$$

If $\omega \subseteq A$, define

$$
f(\omega)=\{f(a): a \in \omega\}\left(\begin{array}{c}
\text { (onto) } \\
1
\end{array}\right.
$$

we say that f is soljactue ft
$f(A)=\operatorname{im} f=B$ (It, "f tales every passide vale)
$a \in A, f(a) \in B$ elements

$$
\left.\begin{array}{ll}
\text { A } & f(A) B \text { a set } \\
\text { aet an } \\
\text { et } & f(w) \\
& f(A) \leq B \\
& \begin{cases}13\end{cases} \\
& \{f(a): a \in A\}
\end{array} \right\rvert\, \begin{array}{ll}
\text { To prese } f(A)=B \text { reed ta pres } \\
& B \leq f(A) .
\end{array}
$$

$\begin{array}{ll}\omega & \sigma \\ \sigma & \sigma \\ \pi & \pi \\ \omega & \pi\end{array}$

(1) 1
-9
$1+1-9$

$$
\stackrel{\text { to }}{\text { ®u) }}
$$

11 W non

0
$\stackrel{1}{1}$

$\stackrel{0}{0}$
ε
11
\dagger

$$
F \sqrt{2} \text { i }
$$

$$
\begin{aligned}
& 9 \neq 0 \\
& 10 N
\end{aligned}
$$

$$
\stackrel{H}{z}
$$

$$
\frac{10}{2}
$$

$$
\begin{aligned}
& \text { II } \frac{\sigma}{\Gamma} \\
& \text { to }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
6 \\
=\begin{array}{r}
6 \\
=1 \\
\square
\end{array}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { line test": } \\
\forall \text { Hor. rise } \\
\text { of } L \text { with } \\
\text { at most } \\
\text { \& } 13
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
(x, y, z) \mapsto(x, y) \\
g(1, d, 3)=(1, d) \\
g(1, d, x)=(1, d) \\
\text { but }(1, d, 3) \neq(1, d, x) \\
g B \xrightarrow{\text { NoT }} \operatorname{inj}
\end{gathered}
$$

$$
\underset{\sim}{\infty} \underset{\sim}{x} \bar{\tau}_{\omega}
$$

$$
\begin{array}{ll}
\text { E } \\
\text { E } \\
E
\end{array}
$$

π
' $\left.4{ }^{\prime} O\right] \ni \times A$

$$
\begin{aligned}
& G \longmapsto G \quad \text { NI }(i)^{2}=(-i)^{2} \\
& \therefore \quad-1)^{1)^{2}} i^{2} \\
& \text { ババンーー } \\
& P(\mathbb{R}) \longrightarrow P(\mathbb{Z}) \\
& S \longmapsto S \cap 卫
\end{aligned}
$$

Not I：Are there sets $S_{1}, S_{\mathrm{a}} \subseteq \mathbb{R}$ $S_{2} \pm S_{1} \neq S_{2}$ bet $S_{1, n} 卫=S_{2} \cap 2$ ？

$$
\{1, \pi\} \cap B=\left\{3=31, e^{3} \cap \mathbb{D}\right.
$$

$$
6
$$

$$
\begin{aligned}
& 19
\end{aligned}
$$

$\overbrace{0}$
$\frac{1}{8}$
$\stackrel{r^{\circ}}{n_{2}}$

FACT f has an invore 9.

\Rightarrow f Binj
$\mp V T \Rightarrow S u r^{-}$
HS lern
Solve $x^{5}+4 x=y$ for x ... Cañt do thr nicel?

$$
\begin{array}{ll}
f(0)=0 & g(0)=0 \\
f(1)=5 & g(5)=1 \\
f(x)=y & \Leftrightarrow g(y)=x \\
f(2)=40 & g(40)=2 \\
f(x)=-5 & g(-5)=x \\
\vdots & \\
x^{5}+4 x=-5 & \Leftrightarrow x=-1
\end{array}
$$

Thus $g(-5)=-1$

$$
\begin{aligned}
g(100)=x & \Leftrightarrow f(x)=100 \\
& \Leftrightarrow x^{s}+4 x=100 \\
& \Leftrightarrow x^{s}+4 x-100=0
\end{aligned}
$$

By IVT, has a sel, ble

$$
\begin{aligned}
& f(2)=40 \\
& f(3)=3^{5}+4 \cdot 3=255
\end{aligned}
$$

Sa $\exists x \in[2,3]$ s,t, $f(x)=100$

$$
f^{-1}(100)=S \text { the } 3 x=2 . . .
$$

Ex: $\mathbb{R}-\{1\} \xrightarrow{f} \mathbb{R}-\{3$

$$
x \longmapsto \frac{x+1}{x-1}
$$

How to find a for mba for $f^{-1} \mid$

$$
f(x)=y \quad \Leftrightarrow \quad x=g(y)
$$

" $g(y)$ is the x sit. $f(x)=y^{\prime \prime}$

$$
\begin{aligned}
\frac{x+1}{x-1}=y \quad \frac{2}{x-1}=y-1 & \Rightarrow \frac{x-1}{2}=\frac{1}{y-1} \\
& \Rightarrow x=\sqrt{11} \frac{1+\frac{x}{y-1}}{\frac{x-1+2}{y-1}=1+\frac{2}{x-1}=4}=g(y) \\
& \Rightarrow(f \circ g)(x) \stackrel{2}{=} x \\
& f\left(1+\frac{2}{x-1}\right)=\frac{\left(1 \frac{2}{x-1}\right)+1}{\left(1+\frac{2}{x-1}\right)-1}=x
\end{aligned}
$$

Week 14: Relations (4.2)
Informally: "relation" is a way to compare "things"
Example: $S=\mathbb{R}, \geq$ is a relation $\mp t, \forall c, b \in S, " a \geq b "$ is either tore or false

Deft: let S be a set. A relation on S is a subset $R \subseteq S \times S$.
usvathose If $(a, b) \in R_{1}$ we say that "a is related to b" and write $a \sim b$ (or $a \widetilde{R}_{s} b$).
Example: $S=\mathbb{R}$
$R \subseteq \mathbb{R} \times \mathbb{R}$ given by

$$
\mathbb{R} \stackrel{\operatorname{def}}{=}\{(a, b) \in \mathbb{R} \times \mathbb{R} \text { st } a \geq b\}
$$

Example: $S=\{0,1,2\}$

$$
\begin{aligned}
& R \leq S \times S \\
& R \stackrel{\text { def }}{=}\{(0,1),(0,2),(1,2)\}
\end{aligned}
$$

$0 \sim 1$ tire bile $(0,1) \in R$
$1 \sim 2$ true
$2 \sim 0$ false bl $(2,0) \notin R$
w）
公
yary
$\stackrel{\rightharpoonup}{t}$
の1）Θ

> jo 2 was
> wo preno foub

Def! Let S be a set.. Let R be a relation on s we say that R is an equivalence relation if
$(R) \forall a \in S, a \sim a$
(S) $\forall a, b \in S, a \sim b \Rightarrow b \sim a$
(T) $\forall a, b, c \in S, a \sim b \wedge b \sim c \Rightarrow a \sim c$

Let $a \in S$. We define the equivalence class of a ta be

$$
[a] \stackrel{\operatorname{del}}{=}\{b \in S \text { st } b \sim a\}
$$

NOTE. if $b \in[a]$ hen $[b]=[a]$

Warning:
ne f interval notation.
now $a \in[a]$ bloc ana rotation,
$[a]$ us $\{a\}$
7
it he set whose only eft is a
More
ells

Claim：thris is on equiv．relatern．
Pf：（R）Let $a \in \mathbb{Z}$ ．（wTP：$a \sim a$ ji，e，$\partial \mid a-a$ ）
Since $a-a=0,2 \mid a-a$, so $a \sim a$ ．
（s）Let $a, b \in \mathbb{Z}$ ．Scppose $a \sim b$ ．Then $2 \mid a-b$ ． （wTP：$b \sim a$ ，iee，$a(b-a)$ ．Since $b-a=-(a-b)$ ， alb－a，so b～a．
(T) Let $a, b, c \in \mathbb{Z}$ ．Soppose $a \sim b$ and $b \sim c$ ．Then $2 \mid a-b$ and $a \mid b-c$ ．
（wis：$a \sim c$ ，i，．e．，ala－c）the $a \mid(a-b)+(b-c)$ ，so alace．Thus $a \sim c$ ．

Q：What are the equiv，dasses？

$$
\begin{aligned}
& {[0]=\left\{a \in \sum s t a \sim 0\right\} \quad a \sim 0 \Leftrightarrow 21 a-0} \\
& =\{a \in \mathbb{Z} s, 21 a\} \quad=-21 a \\
& =2 \mathbb{R}=\mathbb{E} \\
& {[1]=\{a \in \mathbb{s} \cdot t, a \sim 1\} \quad a \sim 1 \Longleftrightarrow 2 \mid a-1} \\
& =\{a \in \mathbb{s}+1 \cdot a \text { is odd }\} \quad \Leftrightarrow a-1 \text { is even } \\
& =2 卫+1 \text { or (1) } \\
& \text { く二, a is odol }
\end{aligned}
$$

NOTE：$[0] \cup[1]=\mathbb{Z}$ AND $[0] \cap[1]=\phi \quad$＂partition＂

$$
\begin{array}{rlrl}
{[2]} & =\{a \in[\text { s.t } a n \alpha\} \quad a \sim 2 \Leftrightarrow 2 \mid a-2 \\
& =\mathbb{E} & \Leftrightarrow a l a \\
{[0]} & =[\alpha] \\
{[0]} & \neq[1] \\
0 & \in[0] \text { bot } 0 \notin[1]
\end{array}
$$

k
k
コンg レ \Rightarrow arc．
$S=\mathbb{R} \quad x \sim y$ if $x<y$
Not AN $E \cdot R . \quad b / C$
Not (R) or（S）．（IS（T））
Pf：Let $a=0$ ．Then $0<0$ is false，so ort．
Thus $<$ is rot reflexive．
Let $a=0$ and $b=1$ ．Then oc，so om l，but

Ξ

$$
\begin{aligned}
& S=\mathbb{R} \quad x \sim y \text { if } x=1 \text { or } y=1 \\
& 1 \sim 1 \quad 2 \sim 3 \\
& 1 \sim 2 \quad 2 \sim 3 \\
& 2 \sim 1 \text {. } \\
& \text { TRUE } \\
& \text { NOT R) ble } 2 \sim 3 \\
& \text { (S) } 3 \text { tre. } \\
& \text { P\&: ket } a, b \in \mathbb{R} \text {. Sps } a \sim b, \text { ise, } a=1 \text { ar } b=1 \text {. } \\
& \text { (wik: } b \sim a, i, e, b=1 \text { or } a=1 \text {) since "or" is commatatuey } \\
& b=1 \text { or } a=1 \text {. Ths ban. } \\
& \text { (T) } a=2, b=1, c=3 \\
& \text { Hen } a \sim b \cap b \sim c \text {, but } a \sim c
\end{aligned}
$$

