MATH 220 HANDOUT 3 - PROOF BY CONTRADICTION

(1) Prove that if $x+y>5$, then $x>2$ or $y>3$.
(2) Let $0<\alpha<1$. Prove that $\sqrt{\alpha}>\alpha$.
(3) Prove that there are no integer solutions to the equation $x^{2}=4 y+2$
(4) Prove that there are no positive integer solutions to the equation $x^{2}-y^{2}=10$.
(5) Prove that there is no smallest positive real number.
(6) Let $b_{1}, b_{2}, b_{3}, b_{4}$ be positive integers such that

$$
\frac{1}{b_{1}}+\frac{1}{b_{2}}+\frac{1}{b_{3}}+\frac{1}{b_{4}}=1
$$

Prove that at least one of the b_{k} 's is even. Hint: clear the denominators.
(7) Show that if a is rational and b is irrational, then $a+b$ is irrational.
(8) Prove that $\sqrt{3}$ is irrational.
(9) Prove that if $r^{3}+r+1=0$ then r is irrational.
(10) Let a, b, c be integers satisfying $a^{2}+b^{2}=c^{2}$. Show that $a b c$ must be even. (Harder problem: show that a or b must be even.)
(11) If a, b, c are odd integers, prove that $a x^{2}+b x+c=0$ does not have a solution x such that x is a rational number.
(12) Prove that if $3 \mid\left(a^{2}+b^{2}\right)$, then $3 \mid a$ and $3 \mid b$. Hint: If $3 \nmid a$ and $3 \nmid b$, what are the possible remainders of a, b, a^{2}, and b^{2} upon division by 3 ?
(13) Prove that $\log _{10} 7$ is irrational.
(14) Let $b \in \mathbf{Z}_{\geq 1}$. Prove that $\log _{b} 3 / \log _{b} 2$ is irrational.
(15) Prove that $\sqrt[5]{5}$ is irrational.
(16) Prove that the equation

$$
\left(x^{2}-y^{2}\right)\left(x^{2}-4 y^{2}\right)=7
$$

has no solutions with $x, y \in \mathbf{Z}$.
(17) Prove that there are infinitely many primes of the form $6 n+1$ or there are infinitely many primes of the form $6 n+5$.
(18) Prove that there are infinitely many primes of the form $6 n+5$.
(19) Try to prove that there are infinitely many primes of the form $6 n+1$. What goes wrong in the argument from the previous problem?
(20) Prove that if $\mathrm{n} \geq 2$, then $\sqrt[n]{n}$ is irrational. Hint: use that if $n>2$, then $2^{n}>n$.

