MATH 220 HANDOUT 5 - INDUCTION

(1) Prove that for any integer $n \ge 1$,

$$2^0 + 2^1 + \ldots + 2^{n-1} = 2^n - 1.$$

- (2) Prove that for any integer $n \ge 1$, n^2 is the sum of the first n odd integers. (For example, $3^2 = 1 + 3 + 5.$
- (3) Show that $7^n 1$ is divisible by 6 for all integers $n \ge 0$.
- (4) Prove that

$$n^9 - 6n^7 + 9n^5 - 4n^3$$

is divisible by 8640 for all integers $n \ge 1$.

(5) Show that

$$2903^n - 803^n - 464^n + 261^n$$

is divisible by 1897 for all integers n > 1.

- (6) Prove that if n is an even natural number, then the number $13^n + 6$ is divisible by 7.
- (7) Prove that $n! \geq 3^n$ for all integers $n \geq 7$.
- (8) Prove that $2^n \ge n^2$ for all integers $n \ge 4$.
- (9) Consider the sequence defined by $a_1 = 1$ and $a_n = \sqrt{2a_{n-1}}$. Prove that $a_n < 2$ for all integers $n \geq 1.$
- (10) (Challenge problem) Prove that

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$$

for all integers $n \geq 1$.

(11) Prove that

$$\frac{4^n}{n+1} \le \frac{(2n)!}{(n!)^2}$$

for all integers $n \geq 1$.

(12) Consider the Fibonacci sequence $\{F_n\}$ defined by $F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}, n \ge 1$. Prove that each of the following statements is true for all integers $n \geq 1$.

(a)
$$F_1 + F_3 + F_5 + \dots + F_{2n-1} = F_{2n}$$

- (b) $F_2 + F_4 + F_6 + \dots + F_{2n} = F_{2n+1} 1$ (c) $F_n < 2^n$
- (d) $F_{n-1}F_{n+1} = F_n^2 + (-1)^{n+1}$.
- (e) Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$. Prove that $F_n = \frac{\alpha^n \beta^n}{\sqrt{5}}$. (Hint: first prove by, for example, direct calculation that α and β are solutions of the equation $x^2 - x - 1 = 0.$) (f) Prove that $F_1^2 + \cdots + F_n^2 = F_n F_{n+1}$.
- (g) Find a formula for $F_1 + \cdots + F_n$ and prove it via induction.
- (13) Prove that $n! > 2^n$ for all integers $n \ge 4$.

(14) Prove that if k is odd, then 2^{n+2} divides

$$k^{2^n} - 1$$

for all positive integers n.

- (15) Let a_n be the sequence defined by $a_1 := 1$, $a_n := na_{n-1}$. Prove that $a_n = n!$.
- (16) Let a_n be the sequence defined by $a_1 := 2$, $a_n := 2a_{n-1}$. Prove that $a_n = 2^n$.
- (17) Prove that 3^n is odd for every non-negative integer.
- (18) Prove that n(n-1) is even for every positive integer n.
- (19) Prove that $n^3 + 2n$ is a multiple of 3 for every positive integer n.
- (20) Prove that, for all n > 1, $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = \frac{n-1}{n}$
- (21) Prove that $1^2 + 4^2 + 7^2 + \dots + (3n-2)^2 = \frac{1}{2}n(6n^2 3n 1)$ for $n \in \mathbb{Z}_{\geq 1}$.
- (22) Prove that $2^2 + 5^2 + 8^2 + \dots + (3n-1)^2 = \frac{1}{2}n(6n^2 + 3n 1)$ for $n \in \mathbb{Z}_{\geq 1}$.
- (23) Prove that $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$ (Hint: use $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$.)
- (24) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- (25) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
- (26) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$.
- (27) Let $n \in \mathbb{Z}_{\geq 0}$. Find a formula for $\sum_{i=1}^{n} i^{4}$. Prove that your formula is correct.
- (28) Prove that $2^n > n^2$ for $n \ge 5$ for $n \in \mathbb{Z}_{\ge 1}$.