MATH 220 HANDOUT 5 - INDUCTION

(1) Prove that for any integer $n \geq 1$,

$$
2^{0}+2^{1}+\ldots+2^{n-1}=2^{n}-1
$$

(2) Prove that for any integer $n \geq 1, n^{2}$ is the sum of the first n odd integers. (For example, $3^{2}=1+3+5$.)
(3) Show that $7^{n}-1$ is divisible by 6 for all integers $n \geq 0$.
(4) Prove that

$$
n^{9}-6 n^{7}+9 n^{5}-4 n^{3}
$$

is divisible by 8640 for all integers $\mathrm{n} \geq 1$.
(5) Show that

$$
2903^{n}-803^{n}-464^{n}+261^{n}
$$

is divisible by 1897 for all integers $n \geq 1$.
(6) Prove that if n is an even natural number, then the number $13^{n}+6$ is divisible by 7 .
(7) Prove that n ! $\geq 3^{n}$ for all integers $n \geq 7$.
(8) Prove that $2^{n} \geq n^{2}$ for all integers $n \geq 4$.
(9) Consider the sequence defined by $a_{1}=1$ and $a_{n}=\sqrt{2 a_{n-1}}$. Prove that $a_{n}<2$ for all integers $n \geq 1$.
(10) (Challenge problem) Prove that

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{3 n+1}>1
$$

for all integers $n \geq 1$.
(11) Prove that

$$
\frac{4^{n}}{n+1} \leq \frac{(2 n)!}{(n!)^{2}}
$$

for all integers $n \geq 1$.
(12) Consider the Fibonacci sequence $\left\{F_{n}\right\}$ defined by $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}, n \geq 1$. Prove that each of the following statements is true for all integers $n \geq 1$.
(a) $F_{1}+F_{3}+F_{5}+\ldots+F_{2 n-1}=F_{2 n}$
(b) $F_{2}+F_{4}+F_{6}+\ldots+F_{2 n}=F_{2 n+1}-1$
(c) $F_{n}<2^{n}$
(d) $F_{n-1} F_{n+1}=F_{n}^{2}+(-1)^{n+1}$.
(e) Let $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. Prove that $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}$. (Hint: first prove by, for example, direct calculation that α and β are solutions of the equation $x^{2}-x-1=0$.)
(f) Prove that $F_{1}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
(g) Find a formula for $F_{1}+\cdots+F_{n}$ and prove it via induction.
(13) Prove that $n!>2^{n}$ for all integers $n \geq 4$.
(14) Prove that if k is odd, then 2^{n+2} divides

$$
k^{2^{n}}-1
$$

for all positive integers n.
(15) Let a_{n} be the sequence defined by $a_{1}:=1, a_{n}:=n a_{n-1}$. Prove that $a_{n}=n!$.
(16) Let a_{n} be the sequence defined by $a_{1}:=2, a_{n}:=2 a_{n-1}$. Prove that $a_{n}=2^{n}$.
(17) Prove that 3^{n} is odd for every non-negative integer.
(18) Prove that $n(n-1)$ is even for every positive integer n.
(19) Prove that $n^{3}+2 n$ is a multiple of 3 for every positive integer n.
(20) Prove that, for all $n>1, \frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n}=\frac{n-1}{n}$
(21) Prove that $1^{2}+4^{2}+7^{2}+\cdots+(3 n-2)^{2}=\frac{1}{2} n\left(6 n^{2}-3 n-1\right)$ for $n \in \mathbf{Z}_{\geq 1}$.
(22) Prove that $2^{2}+5^{2}+8^{2}+\cdots+(3 n-1)^{2}=\frac{1}{2} n\left(6 n^{2}+3 n-1\right)$ for $n \in \mathbf{Z}_{\geq 1}$.
(23) Prove that $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}$ (Hint: use $1+2+3+\cdots+k=\frac{k(k+1)}{2}$.)
(24) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
(25) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(26) Let $n \in \mathbf{Z}_{\geq 0}$. Prove that $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
(27) Let $n \in \mathbf{Z}_{\geq 0}$. Find a formula for $\sum_{i=1}^{n} i^{4}$. Prove that your formula is correct.
(28) Prove that $2^{n}>n^{2}$ for $n \geq 5$ for $n \in \mathbf{Z}_{\geq 1}$.

