MATH 220 HANDOUT 12 - COMPOSITIONS AND INJECTIVITY/SURJECTIVITY

(1) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function $f(x)=\frac{1}{1+x^{2}}$ and let $g: \mathbf{R} \rightarrow \mathbf{R}$ be the function $g(x)=e^{x}$.
(a) What is $g \circ f(0)$?
(b) What is $f \circ g(0)$?
(c) Give a formula for $f \circ g$ and $g \circ f$.
(2) Let $f: \mathbf{R} \rightarrow \mathbf{Z}$ be the function $f(x)=\lfloor x\rfloor$ (i.e., round x down to the nearest integer) and let $g: \mathbf{Z} \rightarrow \mathbf{Z}$ be the function $g(n)=$ 'the number of distinct prime factors of n '. (So $g(0)=g(1)=0, g(4)=1, g(6)=2))$
(a) What is $g \circ f(\pi)$?
(b) What is $g \circ f(91.1023124)$?
(c) Is $g \circ f$ injective? Surjective?
(3) Let $f: \mathbf{Z} \rightarrow P(\mathbf{Z})$ be the function $f(n)=\{n\}$ and let $g: P(\mathbf{Z}) \rightarrow P(\mathbf{Z})$ be the function $g(S)=S \cap\{1\}$.
(a) What is $g \circ f(0)$?
(b) What is $g \circ f(1)$?
(c) Give a formula for $g \circ f$.
(4) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove or disprove each of the following:
(a) If f and g are injections, then $g \circ f$ is an injection.
(b) If f and g are surjections, then $g \circ f$ is a surjection.
(c) If f and g are bijections, then $g \circ f$ is a bijection.
(d) If $g \circ f$ is an injection, then f and g are injections.
(e) If $g \circ f$ is a surjection, then f and g are surjections.
(f) If $g \circ f$ is a bijection, then f and g are bijections.
(g) If $g \circ f$ is an injection, then f is an injection.
(h) (HW) If $g \circ f$ is an injection, then g is an injection.
(i) (HW) If $g \circ f$ is a surjection, then f is a surjection.
(j) (HW) If $g \circ f$ is a surjection, then g is a surjection.
(k) If $g \circ f$ is a bijection, then f is a bijection.
(l) If $g \circ f$ is a bijection, then g is a bijection.
(m) If $g \circ f$ is an injection and g is a bijection, then f is an injection.
(5) Let $f: A \rightarrow B$ be a function. Let $X, Y \subset A$ and let $W, V \subseteq B$. Each of the following statements are false as stated. Which become true if we assume that f is injective or surjective? In each case (f is injective, or f is surjective), prove your assertion or give a counterexample.
(a) $X \subseteq Y \Leftarrow f(X) \subseteq f(Y)$.
(b) $(\mathrm{HW}) f(X \cap Y) \subseteq f(X) \cap f(Y)$.
(c) $f(X)-f(Y) \subseteq f(X-Y)$.
(d) $X \subseteq f^{-1}(f(X))$.
(e) $W \subseteq f\left(f^{-1}(W)\right)$.
(f) $V \subseteq W \Leftarrow f^{-1}(V) \subseteq f^{-1}(W)$.

