## USEFUL BOOLEAN IDENTITIES

Here are some basic identities.
(1) $P \wedge Q=Q \wedge P$
(2) $P \vee Q=Q \vee P$
(3) $(P \wedge Q) \wedge R=P \wedge(Q \wedge R)=P \wedge Q \wedge R$
(4) $(P \vee Q) \vee R=P \vee(Q \vee R)=P \vee Q \vee R$

Here are some less basic identities.
(1) $\neg(P \wedge Q)=\neg P \vee \neg Q$
(2) $\neg(P \vee Q)=\neg P \wedge \neg Q$
(3) $\neg(\neg P)=P$
(4) $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$
(5) $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$
(6) $\neg(P \Rightarrow Q)=P \wedge \neg Q$
(7) $\neg(\forall x, P(x))=\exists x$ such that $\neg P(x)$
(8) $\neg(\exists x$ such that $P(x))=\forall x, \neg P(x)$

We can combine these to negate more complicated statements
(1) $\neg(P \Rightarrow(Q \vee R))=$
$P \wedge \neg(Q \vee R))=$ $P \wedge \neg Q \wedge \neg R$
(2) If $1=0$ or $2+2=5$, then the sky is blue and kittens are cute.

If $(P$ or $Q)$ then ( $R$ and $T$ )
Its negation:
$(P$ or $Q)$ and $n o t(R$ and $T)$
$(1=0$ or $2+2=5)$ and (the sky is not blue or kittens are not cute)
(3) Let's negate $\neg Q \Rightarrow \neg P$.
$\neg(\neg Q \Rightarrow \neg P)$
$\neg Q \wedge \neg(\neg P)$
$\neg Q \wedge P$
This last example is called the contrapositive, and is a useful proof technique! (Try it on your homework.)
(1) $(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P)$ because they have the same negation.

